Plastic deformation of a porous bcc metal containing nanometer sized voids
- Autores
- Ruestes, Carlos Javier; Bringa, Eduardo Marcial; Stukowski, A.; Rodriguez Nieva, J.D.; Tang. Y.; Meyers, M. A.
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Nanoporous materials, can present an outstanding range of mechanical properties. Both molecular dynamics and dislocation analysis were used to evaluate and quantify the evolution of plasticity in a porous Ta single crystal containing randomly placed voids with 3.3 nm radii and average initial porosity of 4.1%, when subjected to uniaxial compressive strain. Nanovoids act as effective sources for dislocation emission. Dislocation shear loops nucleate at the surface of the voids and expand by the advance of the edge component. The evolution of dislocation configuration and densities were predicted by the molecular dynamics calculations and successfully compared to an analysis based on Ashby?s concept of geometrically-necessary dislocations. Resolved shear stress calculations were performed for all bcc slip systems and used to identify the operating Burgers vectors in the dislocation loops. The temperature excursion during plastic deformation was used to estimate the mobile dislocation density which is found to be less than 10% of the total dislocation density.
Fil: Ruestes, Carlos Javier. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. University of California; Estados Unidos
Fil: Bringa, Eduardo Marcial. Universitat Technische Darmstadt; Alemania. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Stukowski, A.. Universitat Technische Darmstadt; Alemania
Fil: Rodriguez Nieva, J.D.. Massachusetts Institute of Technology; Estados Unidos
Fil: Tang. Y.. University of California; Estados Unidos
Fil: Meyers, M. A.. University of California; Estados Unidos - Materia
-
DISLOCATIONS
MOLECULAR DYNAMICS
NANOPOROUS
NANOVOID - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/31918
Ver los metadatos del registro completo
id |
CONICETDig_6cd0eed11dae9c4b1af88b66b7aa2cd5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/31918 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Plastic deformation of a porous bcc metal containing nanometer sized voidsRuestes, Carlos JavierBringa, Eduardo MarcialStukowski, A.Rodriguez Nieva, J.D.Tang. Y.Meyers, M. A.DISLOCATIONSMOLECULAR DYNAMICSNANOPOROUSNANOVOIDhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2Nanoporous materials, can present an outstanding range of mechanical properties. Both molecular dynamics and dislocation analysis were used to evaluate and quantify the evolution of plasticity in a porous Ta single crystal containing randomly placed voids with 3.3 nm radii and average initial porosity of 4.1%, when subjected to uniaxial compressive strain. Nanovoids act as effective sources for dislocation emission. Dislocation shear loops nucleate at the surface of the voids and expand by the advance of the edge component. The evolution of dislocation configuration and densities were predicted by the molecular dynamics calculations and successfully compared to an analysis based on Ashby?s concept of geometrically-necessary dislocations. Resolved shear stress calculations were performed for all bcc slip systems and used to identify the operating Burgers vectors in the dislocation loops. The temperature excursion during plastic deformation was used to estimate the mobile dislocation density which is found to be less than 10% of the total dislocation density.Fil: Ruestes, Carlos Javier. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. University of California; Estados UnidosFil: Bringa, Eduardo Marcial. Universitat Technische Darmstadt; Alemania. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Stukowski, A.. Universitat Technische Darmstadt; AlemaniaFil: Rodriguez Nieva, J.D.. Massachusetts Institute of Technology; Estados UnidosFil: Tang. Y.. University of California; Estados UnidosFil: Meyers, M. A.. University of California; Estados UnidosElsevier Science2014-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/31918Ruestes, Carlos Javier; Bringa, Eduardo Marcial; Stukowski, A.; Rodriguez Nieva, J.D.; Tang. Y.; et al.; Plastic deformation of a porous bcc metal containing nanometer sized voids; Elsevier Science; Computational Materials Science; 88; 6-2014; 92-1020927-0256CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0927025614001517#info:eu-repo/semantics/altIdentifier/doi/10.1016/j.commatsci.2014.02.047info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:15:13Zoai:ri.conicet.gov.ar:11336/31918instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:15:13.542CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Plastic deformation of a porous bcc metal containing nanometer sized voids |
title |
Plastic deformation of a porous bcc metal containing nanometer sized voids |
spellingShingle |
Plastic deformation of a porous bcc metal containing nanometer sized voids Ruestes, Carlos Javier DISLOCATIONS MOLECULAR DYNAMICS NANOPOROUS NANOVOID |
title_short |
Plastic deformation of a porous bcc metal containing nanometer sized voids |
title_full |
Plastic deformation of a porous bcc metal containing nanometer sized voids |
title_fullStr |
Plastic deformation of a porous bcc metal containing nanometer sized voids |
title_full_unstemmed |
Plastic deformation of a porous bcc metal containing nanometer sized voids |
title_sort |
Plastic deformation of a porous bcc metal containing nanometer sized voids |
dc.creator.none.fl_str_mv |
Ruestes, Carlos Javier Bringa, Eduardo Marcial Stukowski, A. Rodriguez Nieva, J.D. Tang. Y. Meyers, M. A. |
author |
Ruestes, Carlos Javier |
author_facet |
Ruestes, Carlos Javier Bringa, Eduardo Marcial Stukowski, A. Rodriguez Nieva, J.D. Tang. Y. Meyers, M. A. |
author_role |
author |
author2 |
Bringa, Eduardo Marcial Stukowski, A. Rodriguez Nieva, J.D. Tang. Y. Meyers, M. A. |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
DISLOCATIONS MOLECULAR DYNAMICS NANOPOROUS NANOVOID |
topic |
DISLOCATIONS MOLECULAR DYNAMICS NANOPOROUS NANOVOID |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Nanoporous materials, can present an outstanding range of mechanical properties. Both molecular dynamics and dislocation analysis were used to evaluate and quantify the evolution of plasticity in a porous Ta single crystal containing randomly placed voids with 3.3 nm radii and average initial porosity of 4.1%, when subjected to uniaxial compressive strain. Nanovoids act as effective sources for dislocation emission. Dislocation shear loops nucleate at the surface of the voids and expand by the advance of the edge component. The evolution of dislocation configuration and densities were predicted by the molecular dynamics calculations and successfully compared to an analysis based on Ashby?s concept of geometrically-necessary dislocations. Resolved shear stress calculations were performed for all bcc slip systems and used to identify the operating Burgers vectors in the dislocation loops. The temperature excursion during plastic deformation was used to estimate the mobile dislocation density which is found to be less than 10% of the total dislocation density. Fil: Ruestes, Carlos Javier. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. University of California; Estados Unidos Fil: Bringa, Eduardo Marcial. Universitat Technische Darmstadt; Alemania. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina Fil: Stukowski, A.. Universitat Technische Darmstadt; Alemania Fil: Rodriguez Nieva, J.D.. Massachusetts Institute of Technology; Estados Unidos Fil: Tang. Y.. University of California; Estados Unidos Fil: Meyers, M. A.. University of California; Estados Unidos |
description |
Nanoporous materials, can present an outstanding range of mechanical properties. Both molecular dynamics and dislocation analysis were used to evaluate and quantify the evolution of plasticity in a porous Ta single crystal containing randomly placed voids with 3.3 nm radii and average initial porosity of 4.1%, when subjected to uniaxial compressive strain. Nanovoids act as effective sources for dislocation emission. Dislocation shear loops nucleate at the surface of the voids and expand by the advance of the edge component. The evolution of dislocation configuration and densities were predicted by the molecular dynamics calculations and successfully compared to an analysis based on Ashby?s concept of geometrically-necessary dislocations. Resolved shear stress calculations were performed for all bcc slip systems and used to identify the operating Burgers vectors in the dislocation loops. The temperature excursion during plastic deformation was used to estimate the mobile dislocation density which is found to be less than 10% of the total dislocation density. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/31918 Ruestes, Carlos Javier; Bringa, Eduardo Marcial; Stukowski, A.; Rodriguez Nieva, J.D.; Tang. Y.; et al.; Plastic deformation of a porous bcc metal containing nanometer sized voids; Elsevier Science; Computational Materials Science; 88; 6-2014; 92-102 0927-0256 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/31918 |
identifier_str_mv |
Ruestes, Carlos Javier; Bringa, Eduardo Marcial; Stukowski, A.; Rodriguez Nieva, J.D.; Tang. Y.; et al.; Plastic deformation of a porous bcc metal containing nanometer sized voids; Elsevier Science; Computational Materials Science; 88; 6-2014; 92-102 0927-0256 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0927025614001517# info:eu-repo/semantics/altIdentifier/doi/10.1016/j.commatsci.2014.02.047 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980818714099712 |
score |
12.993085 |