Plastic deformation of a porous bcc metal containing nanometer sized voids

Autores
Ruestes, Carlos Javier; Bringa, Eduardo Marcial; Stukowski, A.; Rodriguez Nieva, J.D.; Tang. Y.; Meyers, M. A.
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Nanoporous materials, can present an outstanding range of mechanical properties. Both molecular dynamics and dislocation analysis were used to evaluate and quantify the evolution of plasticity in a porous Ta single crystal containing randomly placed voids with 3.3 nm radii and average initial porosity of 4.1%, when subjected to uniaxial compressive strain. Nanovoids act as effective sources for dislocation emission. Dislocation shear loops nucleate at the surface of the voids and expand by the advance of the edge component. The evolution of dislocation configuration and densities were predicted by the molecular dynamics calculations and successfully compared to an analysis based on Ashby?s concept of geometrically-necessary dislocations. Resolved shear stress calculations were performed for all bcc slip systems and used to identify the operating Burgers vectors in the dislocation loops. The temperature excursion during plastic deformation was used to estimate the mobile dislocation density which is found to be less than 10% of the total dislocation density.
Fil: Ruestes, Carlos Javier. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. University of California; Estados Unidos
Fil: Bringa, Eduardo Marcial. Universitat Technische Darmstadt; Alemania. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Stukowski, A.. Universitat Technische Darmstadt; Alemania
Fil: Rodriguez Nieva, J.D.. Massachusetts Institute of Technology; Estados Unidos
Fil: Tang. Y.. University of California; Estados Unidos
Fil: Meyers, M. A.. University of California; Estados Unidos
Materia
DISLOCATIONS
MOLECULAR DYNAMICS
NANOPOROUS
NANOVOID
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/31918

id CONICETDig_6cd0eed11dae9c4b1af88b66b7aa2cd5
oai_identifier_str oai:ri.conicet.gov.ar:11336/31918
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Plastic deformation of a porous bcc metal containing nanometer sized voidsRuestes, Carlos JavierBringa, Eduardo MarcialStukowski, A.Rodriguez Nieva, J.D.Tang. Y.Meyers, M. A.DISLOCATIONSMOLECULAR DYNAMICSNANOPOROUSNANOVOIDhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2Nanoporous materials, can present an outstanding range of mechanical properties. Both molecular dynamics and dislocation analysis were used to evaluate and quantify the evolution of plasticity in a porous Ta single crystal containing randomly placed voids with 3.3 nm radii and average initial porosity of 4.1%, when subjected to uniaxial compressive strain. Nanovoids act as effective sources for dislocation emission. Dislocation shear loops nucleate at the surface of the voids and expand by the advance of the edge component. The evolution of dislocation configuration and densities were predicted by the molecular dynamics calculations and successfully compared to an analysis based on Ashby?s concept of geometrically-necessary dislocations. Resolved shear stress calculations were performed for all bcc slip systems and used to identify the operating Burgers vectors in the dislocation loops. The temperature excursion during plastic deformation was used to estimate the mobile dislocation density which is found to be less than 10% of the total dislocation density.Fil: Ruestes, Carlos Javier. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. University of California; Estados UnidosFil: Bringa, Eduardo Marcial. Universitat Technische Darmstadt; Alemania. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Stukowski, A.. Universitat Technische Darmstadt; AlemaniaFil: Rodriguez Nieva, J.D.. Massachusetts Institute of Technology; Estados UnidosFil: Tang. Y.. University of California; Estados UnidosFil: Meyers, M. A.. University of California; Estados UnidosElsevier Science2014-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/31918Ruestes, Carlos Javier; Bringa, Eduardo Marcial; Stukowski, A.; Rodriguez Nieva, J.D.; Tang. Y.; et al.; Plastic deformation of a porous bcc metal containing nanometer sized voids; Elsevier Science; Computational Materials Science; 88; 6-2014; 92-1020927-0256CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0927025614001517#info:eu-repo/semantics/altIdentifier/doi/10.1016/j.commatsci.2014.02.047info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:15:13Zoai:ri.conicet.gov.ar:11336/31918instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:15:13.542CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Plastic deformation of a porous bcc metal containing nanometer sized voids
title Plastic deformation of a porous bcc metal containing nanometer sized voids
spellingShingle Plastic deformation of a porous bcc metal containing nanometer sized voids
Ruestes, Carlos Javier
DISLOCATIONS
MOLECULAR DYNAMICS
NANOPOROUS
NANOVOID
title_short Plastic deformation of a porous bcc metal containing nanometer sized voids
title_full Plastic deformation of a porous bcc metal containing nanometer sized voids
title_fullStr Plastic deformation of a porous bcc metal containing nanometer sized voids
title_full_unstemmed Plastic deformation of a porous bcc metal containing nanometer sized voids
title_sort Plastic deformation of a porous bcc metal containing nanometer sized voids
dc.creator.none.fl_str_mv Ruestes, Carlos Javier
Bringa, Eduardo Marcial
Stukowski, A.
Rodriguez Nieva, J.D.
Tang. Y.
Meyers, M. A.
author Ruestes, Carlos Javier
author_facet Ruestes, Carlos Javier
Bringa, Eduardo Marcial
Stukowski, A.
Rodriguez Nieva, J.D.
Tang. Y.
Meyers, M. A.
author_role author
author2 Bringa, Eduardo Marcial
Stukowski, A.
Rodriguez Nieva, J.D.
Tang. Y.
Meyers, M. A.
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv DISLOCATIONS
MOLECULAR DYNAMICS
NANOPOROUS
NANOVOID
topic DISLOCATIONS
MOLECULAR DYNAMICS
NANOPOROUS
NANOVOID
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Nanoporous materials, can present an outstanding range of mechanical properties. Both molecular dynamics and dislocation analysis were used to evaluate and quantify the evolution of plasticity in a porous Ta single crystal containing randomly placed voids with 3.3 nm radii and average initial porosity of 4.1%, when subjected to uniaxial compressive strain. Nanovoids act as effective sources for dislocation emission. Dislocation shear loops nucleate at the surface of the voids and expand by the advance of the edge component. The evolution of dislocation configuration and densities were predicted by the molecular dynamics calculations and successfully compared to an analysis based on Ashby?s concept of geometrically-necessary dislocations. Resolved shear stress calculations were performed for all bcc slip systems and used to identify the operating Burgers vectors in the dislocation loops. The temperature excursion during plastic deformation was used to estimate the mobile dislocation density which is found to be less than 10% of the total dislocation density.
Fil: Ruestes, Carlos Javier. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. University of California; Estados Unidos
Fil: Bringa, Eduardo Marcial. Universitat Technische Darmstadt; Alemania. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Stukowski, A.. Universitat Technische Darmstadt; Alemania
Fil: Rodriguez Nieva, J.D.. Massachusetts Institute of Technology; Estados Unidos
Fil: Tang. Y.. University of California; Estados Unidos
Fil: Meyers, M. A.. University of California; Estados Unidos
description Nanoporous materials, can present an outstanding range of mechanical properties. Both molecular dynamics and dislocation analysis were used to evaluate and quantify the evolution of plasticity in a porous Ta single crystal containing randomly placed voids with 3.3 nm radii and average initial porosity of 4.1%, when subjected to uniaxial compressive strain. Nanovoids act as effective sources for dislocation emission. Dislocation shear loops nucleate at the surface of the voids and expand by the advance of the edge component. The evolution of dislocation configuration and densities were predicted by the molecular dynamics calculations and successfully compared to an analysis based on Ashby?s concept of geometrically-necessary dislocations. Resolved shear stress calculations were performed for all bcc slip systems and used to identify the operating Burgers vectors in the dislocation loops. The temperature excursion during plastic deformation was used to estimate the mobile dislocation density which is found to be less than 10% of the total dislocation density.
publishDate 2014
dc.date.none.fl_str_mv 2014-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/31918
Ruestes, Carlos Javier; Bringa, Eduardo Marcial; Stukowski, A.; Rodriguez Nieva, J.D.; Tang. Y.; et al.; Plastic deformation of a porous bcc metal containing nanometer sized voids; Elsevier Science; Computational Materials Science; 88; 6-2014; 92-102
0927-0256
CONICET Digital
CONICET
url http://hdl.handle.net/11336/31918
identifier_str_mv Ruestes, Carlos Javier; Bringa, Eduardo Marcial; Stukowski, A.; Rodriguez Nieva, J.D.; Tang. Y.; et al.; Plastic deformation of a porous bcc metal containing nanometer sized voids; Elsevier Science; Computational Materials Science; 88; 6-2014; 92-102
0927-0256
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0927025614001517#
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.commatsci.2014.02.047
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980818714099712
score 12.993085