Generalizing the entanglement entropy of singular regions in conformal field theories

Autores
Bueno, Pablo; Casini, Horacio German; Witczak-Krempa, William
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the structure of divergences and universal terms of the entanglement and Rényi entropies for singular regions. First, we show that for (3 + 1)-dimensional free conformal field theories (CFTs), entangling regions emanating from vertices give rise to a universal contribution Snuniv=−18πfb(n)∫γk2log2(R/δ), where γ is the curve formed by the intersection of the entangling surface with a unit sphere centered at the vertex, and k the trace of its extrinsic curvature. While for circular and elliptic cones this term reproduces the general-CFT result, it vanishes for polyhedral corners. For those, we argue that the universal contribution, which is logarithmic, is not controlled by a local integral, but rather it depends on details of the CFT in a complicated way. We also study the angle dependence for the entanglement entropy of wedge singularities in 3+1 dimensions. This is done for general CFTs in the smooth limit, and using free and holographic CFTs at generic angles. In the latter case, we show that the wedge contribution is not proportional to the entanglement entropy of a corner region in the (2 + 1)-dimensional holographic CFT. Finally, we show that the mutual information of two regions that touch at a point is not necessarily divergent, as long as the contact is through a sufficiently sharp corner. Similarly, we provide examples of singular entangling regions which do not modify the structure of divergences of the entanglement entropy compared with smooth surfaces.
Fil: Bueno, Pablo. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Casini, Horacio German. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Witczak-Krempa, William. University of Montreal; Canadá
Materia
ADS-CFT CORRESPONDENCE
CONFORMAL FIELD THEORY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/121479

id CONICETDig_ebad996bc4f93ba10b6f2785d6466597
oai_identifier_str oai:ri.conicet.gov.ar:11336/121479
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Generalizing the entanglement entropy of singular regions in conformal field theoriesBueno, PabloCasini, Horacio GermanWitczak-Krempa, WilliamADS-CFT CORRESPONDENCECONFORMAL FIELD THEORYhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We study the structure of divergences and universal terms of the entanglement and Rényi entropies for singular regions. First, we show that for (3 + 1)-dimensional free conformal field theories (CFTs), entangling regions emanating from vertices give rise to a universal contribution Snuniv=−18πfb(n)∫γk2log2(R/δ), where γ is the curve formed by the intersection of the entangling surface with a unit sphere centered at the vertex, and k the trace of its extrinsic curvature. While for circular and elliptic cones this term reproduces the general-CFT result, it vanishes for polyhedral corners. For those, we argue that the universal contribution, which is logarithmic, is not controlled by a local integral, but rather it depends on details of the CFT in a complicated way. We also study the angle dependence for the entanglement entropy of wedge singularities in 3+1 dimensions. This is done for general CFTs in the smooth limit, and using free and holographic CFTs at generic angles. In the latter case, we show that the wedge contribution is not proportional to the entanglement entropy of a corner region in the (2 + 1)-dimensional holographic CFT. Finally, we show that the mutual information of two regions that touch at a point is not necessarily divergent, as long as the contact is through a sufficiently sharp corner. Similarly, we provide examples of singular entangling regions which do not modify the structure of divergences of the entanglement entropy compared with smooth surfaces.Fil: Bueno, Pablo. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Casini, Horacio German. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Witczak-Krempa, William. University of Montreal; CanadáSpringer2019-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/121479Bueno, Pablo; Casini, Horacio German; Witczak-Krempa, William; Generalizing the entanglement entropy of singular regions in conformal field theories; Springer; Journal of High Energy Physics; 2019; 8; 8-2019; 1-461029-8479CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP08(2019)069info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2FJHEP08%282019%29069info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:30:12Zoai:ri.conicet.gov.ar:11336/121479instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:30:12.756CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Generalizing the entanglement entropy of singular regions in conformal field theories
title Generalizing the entanglement entropy of singular regions in conformal field theories
spellingShingle Generalizing the entanglement entropy of singular regions in conformal field theories
Bueno, Pablo
ADS-CFT CORRESPONDENCE
CONFORMAL FIELD THEORY
title_short Generalizing the entanglement entropy of singular regions in conformal field theories
title_full Generalizing the entanglement entropy of singular regions in conformal field theories
title_fullStr Generalizing the entanglement entropy of singular regions in conformal field theories
title_full_unstemmed Generalizing the entanglement entropy of singular regions in conformal field theories
title_sort Generalizing the entanglement entropy of singular regions in conformal field theories
dc.creator.none.fl_str_mv Bueno, Pablo
Casini, Horacio German
Witczak-Krempa, William
author Bueno, Pablo
author_facet Bueno, Pablo
Casini, Horacio German
Witczak-Krempa, William
author_role author
author2 Casini, Horacio German
Witczak-Krempa, William
author2_role author
author
dc.subject.none.fl_str_mv ADS-CFT CORRESPONDENCE
CONFORMAL FIELD THEORY
topic ADS-CFT CORRESPONDENCE
CONFORMAL FIELD THEORY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study the structure of divergences and universal terms of the entanglement and Rényi entropies for singular regions. First, we show that for (3 + 1)-dimensional free conformal field theories (CFTs), entangling regions emanating from vertices give rise to a universal contribution Snuniv=−18πfb(n)∫γk2log2(R/δ), where γ is the curve formed by the intersection of the entangling surface with a unit sphere centered at the vertex, and k the trace of its extrinsic curvature. While for circular and elliptic cones this term reproduces the general-CFT result, it vanishes for polyhedral corners. For those, we argue that the universal contribution, which is logarithmic, is not controlled by a local integral, but rather it depends on details of the CFT in a complicated way. We also study the angle dependence for the entanglement entropy of wedge singularities in 3+1 dimensions. This is done for general CFTs in the smooth limit, and using free and holographic CFTs at generic angles. In the latter case, we show that the wedge contribution is not proportional to the entanglement entropy of a corner region in the (2 + 1)-dimensional holographic CFT. Finally, we show that the mutual information of two regions that touch at a point is not necessarily divergent, as long as the contact is through a sufficiently sharp corner. Similarly, we provide examples of singular entangling regions which do not modify the structure of divergences of the entanglement entropy compared with smooth surfaces.
Fil: Bueno, Pablo. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Casini, Horacio German. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Witczak-Krempa, William. University of Montreal; Canadá
description We study the structure of divergences and universal terms of the entanglement and Rényi entropies for singular regions. First, we show that for (3 + 1)-dimensional free conformal field theories (CFTs), entangling regions emanating from vertices give rise to a universal contribution Snuniv=−18πfb(n)∫γk2log2(R/δ), where γ is the curve formed by the intersection of the entangling surface with a unit sphere centered at the vertex, and k the trace of its extrinsic curvature. While for circular and elliptic cones this term reproduces the general-CFT result, it vanishes for polyhedral corners. For those, we argue that the universal contribution, which is logarithmic, is not controlled by a local integral, but rather it depends on details of the CFT in a complicated way. We also study the angle dependence for the entanglement entropy of wedge singularities in 3+1 dimensions. This is done for general CFTs in the smooth limit, and using free and holographic CFTs at generic angles. In the latter case, we show that the wedge contribution is not proportional to the entanglement entropy of a corner region in the (2 + 1)-dimensional holographic CFT. Finally, we show that the mutual information of two regions that touch at a point is not necessarily divergent, as long as the contact is through a sufficiently sharp corner. Similarly, we provide examples of singular entangling regions which do not modify the structure of divergences of the entanglement entropy compared with smooth surfaces.
publishDate 2019
dc.date.none.fl_str_mv 2019-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/121479
Bueno, Pablo; Casini, Horacio German; Witczak-Krempa, William; Generalizing the entanglement entropy of singular regions in conformal field theories; Springer; Journal of High Energy Physics; 2019; 8; 8-2019; 1-46
1029-8479
CONICET Digital
CONICET
url http://hdl.handle.net/11336/121479
identifier_str_mv Bueno, Pablo; Casini, Horacio German; Witczak-Krempa, William; Generalizing the entanglement entropy of singular regions in conformal field theories; Springer; Journal of High Energy Physics; 2019; 8; 8-2019; 1-46
1029-8479
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP08(2019)069
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2FJHEP08%282019%29069
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614310430507008
score 13.070432