Generalizing the entanglement entropy of singular regions in conformal field theories
- Autores
- Bueno, Pablo; Casini, Horacio German; Witczak-Krempa, William
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the structure of divergences and universal terms of the entanglement and Rényi entropies for singular regions. First, we show that for (3 + 1)-dimensional free conformal field theories (CFTs), entangling regions emanating from vertices give rise to a universal contribution Snuniv=−18πfb(n)∫γk2log2(R/δ), where γ is the curve formed by the intersection of the entangling surface with a unit sphere centered at the vertex, and k the trace of its extrinsic curvature. While for circular and elliptic cones this term reproduces the general-CFT result, it vanishes for polyhedral corners. For those, we argue that the universal contribution, which is logarithmic, is not controlled by a local integral, but rather it depends on details of the CFT in a complicated way. We also study the angle dependence for the entanglement entropy of wedge singularities in 3+1 dimensions. This is done for general CFTs in the smooth limit, and using free and holographic CFTs at generic angles. In the latter case, we show that the wedge contribution is not proportional to the entanglement entropy of a corner region in the (2 + 1)-dimensional holographic CFT. Finally, we show that the mutual information of two regions that touch at a point is not necessarily divergent, as long as the contact is through a sufficiently sharp corner. Similarly, we provide examples of singular entangling regions which do not modify the structure of divergences of the entanglement entropy compared with smooth surfaces.
Fil: Bueno, Pablo. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Casini, Horacio German. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Witczak-Krempa, William. University of Montreal; Canadá - Materia
-
ADS-CFT CORRESPONDENCE
CONFORMAL FIELD THEORY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/121479
Ver los metadatos del registro completo
id |
CONICETDig_ebad996bc4f93ba10b6f2785d6466597 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/121479 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Generalizing the entanglement entropy of singular regions in conformal field theoriesBueno, PabloCasini, Horacio GermanWitczak-Krempa, WilliamADS-CFT CORRESPONDENCECONFORMAL FIELD THEORYhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We study the structure of divergences and universal terms of the entanglement and Rényi entropies for singular regions. First, we show that for (3 + 1)-dimensional free conformal field theories (CFTs), entangling regions emanating from vertices give rise to a universal contribution Snuniv=−18πfb(n)∫γk2log2(R/δ), where γ is the curve formed by the intersection of the entangling surface with a unit sphere centered at the vertex, and k the trace of its extrinsic curvature. While for circular and elliptic cones this term reproduces the general-CFT result, it vanishes for polyhedral corners. For those, we argue that the universal contribution, which is logarithmic, is not controlled by a local integral, but rather it depends on details of the CFT in a complicated way. We also study the angle dependence for the entanglement entropy of wedge singularities in 3+1 dimensions. This is done for general CFTs in the smooth limit, and using free and holographic CFTs at generic angles. In the latter case, we show that the wedge contribution is not proportional to the entanglement entropy of a corner region in the (2 + 1)-dimensional holographic CFT. Finally, we show that the mutual information of two regions that touch at a point is not necessarily divergent, as long as the contact is through a sufficiently sharp corner. Similarly, we provide examples of singular entangling regions which do not modify the structure of divergences of the entanglement entropy compared with smooth surfaces.Fil: Bueno, Pablo. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Casini, Horacio German. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Witczak-Krempa, William. University of Montreal; CanadáSpringer2019-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/121479Bueno, Pablo; Casini, Horacio German; Witczak-Krempa, William; Generalizing the entanglement entropy of singular regions in conformal field theories; Springer; Journal of High Energy Physics; 2019; 8; 8-2019; 1-461029-8479CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP08(2019)069info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2FJHEP08%282019%29069info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:30:12Zoai:ri.conicet.gov.ar:11336/121479instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:30:12.756CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Generalizing the entanglement entropy of singular regions in conformal field theories |
title |
Generalizing the entanglement entropy of singular regions in conformal field theories |
spellingShingle |
Generalizing the entanglement entropy of singular regions in conformal field theories Bueno, Pablo ADS-CFT CORRESPONDENCE CONFORMAL FIELD THEORY |
title_short |
Generalizing the entanglement entropy of singular regions in conformal field theories |
title_full |
Generalizing the entanglement entropy of singular regions in conformal field theories |
title_fullStr |
Generalizing the entanglement entropy of singular regions in conformal field theories |
title_full_unstemmed |
Generalizing the entanglement entropy of singular regions in conformal field theories |
title_sort |
Generalizing the entanglement entropy of singular regions in conformal field theories |
dc.creator.none.fl_str_mv |
Bueno, Pablo Casini, Horacio German Witczak-Krempa, William |
author |
Bueno, Pablo |
author_facet |
Bueno, Pablo Casini, Horacio German Witczak-Krempa, William |
author_role |
author |
author2 |
Casini, Horacio German Witczak-Krempa, William |
author2_role |
author author |
dc.subject.none.fl_str_mv |
ADS-CFT CORRESPONDENCE CONFORMAL FIELD THEORY |
topic |
ADS-CFT CORRESPONDENCE CONFORMAL FIELD THEORY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study the structure of divergences and universal terms of the entanglement and Rényi entropies for singular regions. First, we show that for (3 + 1)-dimensional free conformal field theories (CFTs), entangling regions emanating from vertices give rise to a universal contribution Snuniv=−18πfb(n)∫γk2log2(R/δ), where γ is the curve formed by the intersection of the entangling surface with a unit sphere centered at the vertex, and k the trace of its extrinsic curvature. While for circular and elliptic cones this term reproduces the general-CFT result, it vanishes for polyhedral corners. For those, we argue that the universal contribution, which is logarithmic, is not controlled by a local integral, but rather it depends on details of the CFT in a complicated way. We also study the angle dependence for the entanglement entropy of wedge singularities in 3+1 dimensions. This is done for general CFTs in the smooth limit, and using free and holographic CFTs at generic angles. In the latter case, we show that the wedge contribution is not proportional to the entanglement entropy of a corner region in the (2 + 1)-dimensional holographic CFT. Finally, we show that the mutual information of two regions that touch at a point is not necessarily divergent, as long as the contact is through a sufficiently sharp corner. Similarly, we provide examples of singular entangling regions which do not modify the structure of divergences of the entanglement entropy compared with smooth surfaces. Fil: Bueno, Pablo. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina Fil: Casini, Horacio German. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina Fil: Witczak-Krempa, William. University of Montreal; Canadá |
description |
We study the structure of divergences and universal terms of the entanglement and Rényi entropies for singular regions. First, we show that for (3 + 1)-dimensional free conformal field theories (CFTs), entangling regions emanating from vertices give rise to a universal contribution Snuniv=−18πfb(n)∫γk2log2(R/δ), where γ is the curve formed by the intersection of the entangling surface with a unit sphere centered at the vertex, and k the trace of its extrinsic curvature. While for circular and elliptic cones this term reproduces the general-CFT result, it vanishes for polyhedral corners. For those, we argue that the universal contribution, which is logarithmic, is not controlled by a local integral, but rather it depends on details of the CFT in a complicated way. We also study the angle dependence for the entanglement entropy of wedge singularities in 3+1 dimensions. This is done for general CFTs in the smooth limit, and using free and holographic CFTs at generic angles. In the latter case, we show that the wedge contribution is not proportional to the entanglement entropy of a corner region in the (2 + 1)-dimensional holographic CFT. Finally, we show that the mutual information of two regions that touch at a point is not necessarily divergent, as long as the contact is through a sufficiently sharp corner. Similarly, we provide examples of singular entangling regions which do not modify the structure of divergences of the entanglement entropy compared with smooth surfaces. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/121479 Bueno, Pablo; Casini, Horacio German; Witczak-Krempa, William; Generalizing the entanglement entropy of singular regions in conformal field theories; Springer; Journal of High Energy Physics; 2019; 8; 8-2019; 1-46 1029-8479 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/121479 |
identifier_str_mv |
Bueno, Pablo; Casini, Horacio German; Witczak-Krempa, William; Generalizing the entanglement entropy of singular regions in conformal field theories; Springer; Journal of High Energy Physics; 2019; 8; 8-2019; 1-46 1029-8479 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP08(2019)069 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2FJHEP08%282019%29069 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614310430507008 |
score |
13.070432 |