Anisotropic recrystallization of PCL/SBA-15 composites during 3D printing: a SAXS study of the influence of processing parameters
- Autores
- Britto, Fiona Macarena; Huck Iriart, Cristián; de Vita, Fabián Darío; Alvarez, Vera Alejandra; Gutiérrez Carmona, Tomy José; Soler Illia, Galo Juan de Avila Arturo
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Additive manufacturing represents nowadays one of the most disruptive technologies, both in academic and industrial fields. In this context, the design and 3D printing of biomimetic materials for tissue engineering and regenerative medicine applications have attracted a lot of attention. However, a key step that must be overcome in order to design and fabricate new functional materials is to have a better understanding about the effect of some process parameters on the final structure of materials. Recent works showed some interest in this area, and have investigated the structural evolution of PCL during 3D printing and the effect of particle alignment induced by extrusion-based 3D printing on final structural properties of 3D printed materials [1,2]. In the present work, mesoporous silica particles (SBA-15) were incorporated into a polycaprolactone (PCL) matrix through an extrusion-based process, to obtain a filament compatible with melt extrusion-based 3D printing systems. In order to study the effect of processing parameters and particle alignment on the polymer recrystallization, PCL and PCL/SBA-15 samples were printed using two different nozzle sizes, 0.25 mm and 0.40 mm. Structural characterization of PCL and PCL/SBA-15 3D-printed samples was performed by small-angle X-ray scattering (SAXS). Measurements were carried out using a Xeuss 2.0 (Xenocs, France) with a sample-to-detector distance of 1200 mm and λ = 0.154 nm which allowed us to study both the lamellar structure of PCL and the hexagonal pore structure of SBA-15. Analysis of 2D SAXS patterns showed that rod-like SBA-15 particles were aligned along the print direction, as expected. More interestingly, PCL presented anisotropic recrystallization, perpendicular to the print direction only in the presence of SBA-15 (anisotropic patterns were not observed when PCL samples were studied). Results indicate that melt extrusion-based 3D printing aligns high aspect ratio SBA-15 particles, which induces anisotropic recrystallization of PCL, and the alignment is dependent, for instance, on the nozzle size. To have a better understanding of the influence of processing parameters on the recrystallization and orientation of polymer crystals, we propose the use of CATERETÊ beamline at Sirius, in particular, the X-Ray Photon Correlation Spectroscopy (XPCS) facility. Since XPCS has proved to be an excellent technique to study polymer dynamics [3], we consider that this technique would shed some light on the anisotropic recrystallization of polymers in the presence of anisotropic particles.
Fil: Britto, Fiona Macarena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina
Fil: Huck Iriart, Cristián. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina
Fil: de Vita, Fabián Darío. Universidad Nacional de San Martin. Fundacion Argentina de Nanotecnologia.; Argentina
Fil: Alvarez, Vera Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Gutiérrez Carmona, Tomy José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Soler Illia, Galo Juan de Avila Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina
4th International User Workshop on Coherent X-ray Imaging and Small Angle X-ray Scattering
Campinas
Brasil
Brazilian Center for Research in Energy and Materials
Ministry of Science, Technology, Innovation and Communication - Materia
-
3D PRINTING
SAXS
POLYMER
ANISOTROPIC RECRYSTALLIZATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/159939
Ver los metadatos del registro completo
id |
CONICETDig_b38c56b79d22da3c67538a1ca885993a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/159939 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Anisotropic recrystallization of PCL/SBA-15 composites during 3D printing: a SAXS study of the influence of processing parametersBritto, Fiona MacarenaHuck Iriart, Cristiánde Vita, Fabián DaríoAlvarez, Vera AlejandraGutiérrez Carmona, Tomy JoséSoler Illia, Galo Juan de Avila Arturo3D PRINTINGSAXSPOLYMERANISOTROPIC RECRYSTALLIZATIONhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1https://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2Additive manufacturing represents nowadays one of the most disruptive technologies, both in academic and industrial fields. In this context, the design and 3D printing of biomimetic materials for tissue engineering and regenerative medicine applications have attracted a lot of attention. However, a key step that must be overcome in order to design and fabricate new functional materials is to have a better understanding about the effect of some process parameters on the final structure of materials. Recent works showed some interest in this area, and have investigated the structural evolution of PCL during 3D printing and the effect of particle alignment induced by extrusion-based 3D printing on final structural properties of 3D printed materials [1,2]. In the present work, mesoporous silica particles (SBA-15) were incorporated into a polycaprolactone (PCL) matrix through an extrusion-based process, to obtain a filament compatible with melt extrusion-based 3D printing systems. In order to study the effect of processing parameters and particle alignment on the polymer recrystallization, PCL and PCL/SBA-15 samples were printed using two different nozzle sizes, 0.25 mm and 0.40 mm. Structural characterization of PCL and PCL/SBA-15 3D-printed samples was performed by small-angle X-ray scattering (SAXS). Measurements were carried out using a Xeuss 2.0 (Xenocs, France) with a sample-to-detector distance of 1200 mm and λ = 0.154 nm which allowed us to study both the lamellar structure of PCL and the hexagonal pore structure of SBA-15. Analysis of 2D SAXS patterns showed that rod-like SBA-15 particles were aligned along the print direction, as expected. More interestingly, PCL presented anisotropic recrystallization, perpendicular to the print direction only in the presence of SBA-15 (anisotropic patterns were not observed when PCL samples were studied). Results indicate that melt extrusion-based 3D printing aligns high aspect ratio SBA-15 particles, which induces anisotropic recrystallization of PCL, and the alignment is dependent, for instance, on the nozzle size. To have a better understanding of the influence of processing parameters on the recrystallization and orientation of polymer crystals, we propose the use of CATERETÊ beamline at Sirius, in particular, the X-Ray Photon Correlation Spectroscopy (XPCS) facility. Since XPCS has proved to be an excellent technique to study polymer dynamics [3], we consider that this technique would shed some light on the anisotropic recrystallization of polymers in the presence of anisotropic particles.Fil: Britto, Fiona Macarena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martin. Instituto de Nanosistemas; ArgentinaFil: Huck Iriart, Cristián. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; ArgentinaFil: de Vita, Fabián Darío. Universidad Nacional de San Martin. Fundacion Argentina de Nanotecnologia.; ArgentinaFil: Alvarez, Vera Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Gutiérrez Carmona, Tomy José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Soler Illia, Galo Juan de Avila Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina4th International User Workshop on Coherent X-ray Imaging and Small Angle X-ray ScatteringCampinasBrasilBrazilian Center for Research in Energy and MaterialsMinistry of Science, Technology, Innovation and CommunicationBrazilian Center for Research in Energy and Materials2020info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectWorkshopBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/159939Anisotropic recrystallization of PCL/SBA-15 composites during 3D printing: a SAXS study of the influence of processing parameters; 4th International User Workshop on Coherent X-ray Imaging and Small Angle X-ray Scattering; Campinas; Brasil; 2020; 5-5CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pages.cnpem.br/caterete-workshop/Internacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:49:55Zoai:ri.conicet.gov.ar:11336/159939instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:49:55.496CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Anisotropic recrystallization of PCL/SBA-15 composites during 3D printing: a SAXS study of the influence of processing parameters |
title |
Anisotropic recrystallization of PCL/SBA-15 composites during 3D printing: a SAXS study of the influence of processing parameters |
spellingShingle |
Anisotropic recrystallization of PCL/SBA-15 composites during 3D printing: a SAXS study of the influence of processing parameters Britto, Fiona Macarena 3D PRINTING SAXS POLYMER ANISOTROPIC RECRYSTALLIZATION |
title_short |
Anisotropic recrystallization of PCL/SBA-15 composites during 3D printing: a SAXS study of the influence of processing parameters |
title_full |
Anisotropic recrystallization of PCL/SBA-15 composites during 3D printing: a SAXS study of the influence of processing parameters |
title_fullStr |
Anisotropic recrystallization of PCL/SBA-15 composites during 3D printing: a SAXS study of the influence of processing parameters |
title_full_unstemmed |
Anisotropic recrystallization of PCL/SBA-15 composites during 3D printing: a SAXS study of the influence of processing parameters |
title_sort |
Anisotropic recrystallization of PCL/SBA-15 composites during 3D printing: a SAXS study of the influence of processing parameters |
dc.creator.none.fl_str_mv |
Britto, Fiona Macarena Huck Iriart, Cristián de Vita, Fabián Darío Alvarez, Vera Alejandra Gutiérrez Carmona, Tomy José Soler Illia, Galo Juan de Avila Arturo |
author |
Britto, Fiona Macarena |
author_facet |
Britto, Fiona Macarena Huck Iriart, Cristián de Vita, Fabián Darío Alvarez, Vera Alejandra Gutiérrez Carmona, Tomy José Soler Illia, Galo Juan de Avila Arturo |
author_role |
author |
author2 |
Huck Iriart, Cristián de Vita, Fabián Darío Alvarez, Vera Alejandra Gutiérrez Carmona, Tomy José Soler Illia, Galo Juan de Avila Arturo |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
3D PRINTING SAXS POLYMER ANISOTROPIC RECRYSTALLIZATION |
topic |
3D PRINTING SAXS POLYMER ANISOTROPIC RECRYSTALLIZATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/2.10 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Additive manufacturing represents nowadays one of the most disruptive technologies, both in academic and industrial fields. In this context, the design and 3D printing of biomimetic materials for tissue engineering and regenerative medicine applications have attracted a lot of attention. However, a key step that must be overcome in order to design and fabricate new functional materials is to have a better understanding about the effect of some process parameters on the final structure of materials. Recent works showed some interest in this area, and have investigated the structural evolution of PCL during 3D printing and the effect of particle alignment induced by extrusion-based 3D printing on final structural properties of 3D printed materials [1,2]. In the present work, mesoporous silica particles (SBA-15) were incorporated into a polycaprolactone (PCL) matrix through an extrusion-based process, to obtain a filament compatible with melt extrusion-based 3D printing systems. In order to study the effect of processing parameters and particle alignment on the polymer recrystallization, PCL and PCL/SBA-15 samples were printed using two different nozzle sizes, 0.25 mm and 0.40 mm. Structural characterization of PCL and PCL/SBA-15 3D-printed samples was performed by small-angle X-ray scattering (SAXS). Measurements were carried out using a Xeuss 2.0 (Xenocs, France) with a sample-to-detector distance of 1200 mm and λ = 0.154 nm which allowed us to study both the lamellar structure of PCL and the hexagonal pore structure of SBA-15. Analysis of 2D SAXS patterns showed that rod-like SBA-15 particles were aligned along the print direction, as expected. More interestingly, PCL presented anisotropic recrystallization, perpendicular to the print direction only in the presence of SBA-15 (anisotropic patterns were not observed when PCL samples were studied). Results indicate that melt extrusion-based 3D printing aligns high aspect ratio SBA-15 particles, which induces anisotropic recrystallization of PCL, and the alignment is dependent, for instance, on the nozzle size. To have a better understanding of the influence of processing parameters on the recrystallization and orientation of polymer crystals, we propose the use of CATERETÊ beamline at Sirius, in particular, the X-Ray Photon Correlation Spectroscopy (XPCS) facility. Since XPCS has proved to be an excellent technique to study polymer dynamics [3], we consider that this technique would shed some light on the anisotropic recrystallization of polymers in the presence of anisotropic particles. Fil: Britto, Fiona Macarena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina Fil: Huck Iriart, Cristián. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina Fil: de Vita, Fabián Darío. Universidad Nacional de San Martin. Fundacion Argentina de Nanotecnologia.; Argentina Fil: Alvarez, Vera Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina Fil: Gutiérrez Carmona, Tomy José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina Fil: Soler Illia, Galo Juan de Avila Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina 4th International User Workshop on Coherent X-ray Imaging and Small Angle X-ray Scattering Campinas Brasil Brazilian Center for Research in Energy and Materials Ministry of Science, Technology, Innovation and Communication |
description |
Additive manufacturing represents nowadays one of the most disruptive technologies, both in academic and industrial fields. In this context, the design and 3D printing of biomimetic materials for tissue engineering and regenerative medicine applications have attracted a lot of attention. However, a key step that must be overcome in order to design and fabricate new functional materials is to have a better understanding about the effect of some process parameters on the final structure of materials. Recent works showed some interest in this area, and have investigated the structural evolution of PCL during 3D printing and the effect of particle alignment induced by extrusion-based 3D printing on final structural properties of 3D printed materials [1,2]. In the present work, mesoporous silica particles (SBA-15) were incorporated into a polycaprolactone (PCL) matrix through an extrusion-based process, to obtain a filament compatible with melt extrusion-based 3D printing systems. In order to study the effect of processing parameters and particle alignment on the polymer recrystallization, PCL and PCL/SBA-15 samples were printed using two different nozzle sizes, 0.25 mm and 0.40 mm. Structural characterization of PCL and PCL/SBA-15 3D-printed samples was performed by small-angle X-ray scattering (SAXS). Measurements were carried out using a Xeuss 2.0 (Xenocs, France) with a sample-to-detector distance of 1200 mm and λ = 0.154 nm which allowed us to study both the lamellar structure of PCL and the hexagonal pore structure of SBA-15. Analysis of 2D SAXS patterns showed that rod-like SBA-15 particles were aligned along the print direction, as expected. More interestingly, PCL presented anisotropic recrystallization, perpendicular to the print direction only in the presence of SBA-15 (anisotropic patterns were not observed when PCL samples were studied). Results indicate that melt extrusion-based 3D printing aligns high aspect ratio SBA-15 particles, which induces anisotropic recrystallization of PCL, and the alignment is dependent, for instance, on the nozzle size. To have a better understanding of the influence of processing parameters on the recrystallization and orientation of polymer crystals, we propose the use of CATERETÊ beamline at Sirius, in particular, the X-Ray Photon Correlation Spectroscopy (XPCS) facility. Since XPCS has proved to be an excellent technique to study polymer dynamics [3], we consider that this technique would shed some light on the anisotropic recrystallization of polymers in the presence of anisotropic particles. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/conferenceObject Workshop Book http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
status_str |
publishedVersion |
format |
conferenceObject |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/159939 Anisotropic recrystallization of PCL/SBA-15 composites during 3D printing: a SAXS study of the influence of processing parameters; 4th International User Workshop on Coherent X-ray Imaging and Small Angle X-ray Scattering; Campinas; Brasil; 2020; 5-5 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/159939 |
identifier_str_mv |
Anisotropic recrystallization of PCL/SBA-15 composites during 3D printing: a SAXS study of the influence of processing parameters; 4th International User Workshop on Coherent X-ray Imaging and Small Angle X-ray Scattering; Campinas; Brasil; 2020; 5-5 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://pages.cnpem.br/caterete-workshop/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.coverage.none.fl_str_mv |
Internacional |
dc.publisher.none.fl_str_mv |
Brazilian Center for Research in Energy and Materials |
publisher.none.fl_str_mv |
Brazilian Center for Research in Energy and Materials |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269001513697280 |
score |
13.13397 |