Anisotropic recrystallization of PCL/SBA-15 composites during 3D printing: a SAXS study of the influence of processing parameters

Autores
Britto, Fiona Macarena; Huck Iriart, Cristián; de Vita, Fabián Darío; Alvarez, Vera Alejandra; Gutiérrez Carmona, Tomy José; Soler Illia, Galo Juan de Avila Arturo
Año de publicación
2020
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Additive manufacturing represents nowadays one of the most disruptive technologies, both in academic and industrial fields. In this context, the design and 3D printing of biomimetic materials for tissue engineering and regenerative medicine applications have attracted a lot of attention. However, a key step that must be overcome in order to design and fabricate new functional materials is to have a better understanding about the effect of some process parameters on the final structure of materials. Recent works showed some interest in this area, and have investigated the structural evolution of PCL during 3D printing and the effect of particle alignment induced by extrusion-based 3D printing on final structural properties of 3D printed materials [1,2]. In the present work, mesoporous silica particles (SBA-15) were incorporated into a polycaprolactone (PCL) matrix through an extrusion-based process, to obtain a filament compatible with melt extrusion-based 3D printing systems. In order to study the effect of processing parameters and particle alignment on the polymer recrystallization, PCL and PCL/SBA-15 samples were printed using two different nozzle sizes, 0.25 mm and 0.40 mm. Structural characterization of PCL and PCL/SBA-15 3D-printed samples was performed by small-angle X-ray scattering (SAXS). Measurements were carried out using a Xeuss 2.0 (Xenocs, France) with a sample-to-detector distance of 1200 mm and λ = 0.154 nm which allowed us to study both the lamellar structure of PCL and the hexagonal pore structure of SBA-15. Analysis of 2D SAXS patterns showed that rod-like SBA-15 particles were aligned along the print direction, as expected. More interestingly, PCL presented anisotropic recrystallization, perpendicular to the print direction only in the presence of SBA-15 (anisotropic patterns were not observed when PCL samples were studied). Results indicate that melt extrusion-based 3D printing aligns high aspect ratio SBA-15 particles, which induces anisotropic recrystallization of PCL, and the alignment is dependent, for instance, on the nozzle size. To have a better understanding of the influence of processing parameters on the recrystallization and orientation of polymer crystals, we propose the use of CATERETÊ beamline at Sirius, in particular, the X-Ray Photon Correlation Spectroscopy (XPCS) facility. Since XPCS has proved to be an excellent technique to study polymer dynamics [3], we consider that this technique would shed some light on the anisotropic recrystallization of polymers in the presence of anisotropic particles.
Fil: Britto, Fiona Macarena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina
Fil: Huck Iriart, Cristián. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina
Fil: de Vita, Fabián Darío. Universidad Nacional de San Martin. Fundacion Argentina de Nanotecnologia.; Argentina
Fil: Alvarez, Vera Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Gutiérrez Carmona, Tomy José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Soler Illia, Galo Juan de Avila Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina
4th International User Workshop on Coherent X-ray Imaging and Small Angle X-ray Scattering
Campinas
Brasil
Brazilian Center for Research in Energy and Materials
Ministry of Science, Technology, Innovation and Communication
Materia
3D PRINTING
SAXS
POLYMER
ANISOTROPIC RECRYSTALLIZATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/159939

id CONICETDig_b38c56b79d22da3c67538a1ca885993a
oai_identifier_str oai:ri.conicet.gov.ar:11336/159939
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Anisotropic recrystallization of PCL/SBA-15 composites during 3D printing: a SAXS study of the influence of processing parametersBritto, Fiona MacarenaHuck Iriart, Cristiánde Vita, Fabián DaríoAlvarez, Vera AlejandraGutiérrez Carmona, Tomy JoséSoler Illia, Galo Juan de Avila Arturo3D PRINTINGSAXSPOLYMERANISOTROPIC RECRYSTALLIZATIONhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1https://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2Additive manufacturing represents nowadays one of the most disruptive technologies, both in academic and industrial fields. In this context, the design and 3D printing of biomimetic materials for tissue engineering and regenerative medicine applications have attracted a lot of attention. However, a key step that must be overcome in order to design and fabricate new functional materials is to have a better understanding about the effect of some process parameters on the final structure of materials. Recent works showed some interest in this area, and have investigated the structural evolution of PCL during 3D printing and the effect of particle alignment induced by extrusion-based 3D printing on final structural properties of 3D printed materials [1,2]. In the present work, mesoporous silica particles (SBA-15) were incorporated into a polycaprolactone (PCL) matrix through an extrusion-based process, to obtain a filament compatible with melt extrusion-based 3D printing systems. In order to study the effect of processing parameters and particle alignment on the polymer recrystallization, PCL and PCL/SBA-15 samples were printed using two different nozzle sizes, 0.25 mm and 0.40 mm. Structural characterization of PCL and PCL/SBA-15 3D-printed samples was performed by small-angle X-ray scattering (SAXS). Measurements were carried out using a Xeuss 2.0 (Xenocs, France) with a sample-to-detector distance of 1200 mm and λ = 0.154 nm which allowed us to study both the lamellar structure of PCL and the hexagonal pore structure of SBA-15. Analysis of 2D SAXS patterns showed that rod-like SBA-15 particles were aligned along the print direction, as expected. More interestingly, PCL presented anisotropic recrystallization, perpendicular to the print direction only in the presence of SBA-15 (anisotropic patterns were not observed when PCL samples were studied). Results indicate that melt extrusion-based 3D printing aligns high aspect ratio SBA-15 particles, which induces anisotropic recrystallization of PCL, and the alignment is dependent, for instance, on the nozzle size. To have a better understanding of the influence of processing parameters on the recrystallization and orientation of polymer crystals, we propose the use of CATERETÊ beamline at Sirius, in particular, the X-Ray Photon Correlation Spectroscopy (XPCS) facility. Since XPCS has proved to be an excellent technique to study polymer dynamics [3], we consider that this technique would shed some light on the anisotropic recrystallization of polymers in the presence of anisotropic particles.Fil: Britto, Fiona Macarena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martin. Instituto de Nanosistemas; ArgentinaFil: Huck Iriart, Cristián. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; ArgentinaFil: de Vita, Fabián Darío. Universidad Nacional de San Martin. Fundacion Argentina de Nanotecnologia.; ArgentinaFil: Alvarez, Vera Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Gutiérrez Carmona, Tomy José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Soler Illia, Galo Juan de Avila Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina4th International User Workshop on Coherent X-ray Imaging and Small Angle X-ray ScatteringCampinasBrasilBrazilian Center for Research in Energy and MaterialsMinistry of Science, Technology, Innovation and CommunicationBrazilian Center for Research in Energy and Materials2020info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectWorkshopBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/159939Anisotropic recrystallization of PCL/SBA-15 composites during 3D printing: a SAXS study of the influence of processing parameters; 4th International User Workshop on Coherent X-ray Imaging and Small Angle X-ray Scattering; Campinas; Brasil; 2020; 5-5CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pages.cnpem.br/caterete-workshop/Internacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:49:55Zoai:ri.conicet.gov.ar:11336/159939instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:49:55.496CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Anisotropic recrystallization of PCL/SBA-15 composites during 3D printing: a SAXS study of the influence of processing parameters
title Anisotropic recrystallization of PCL/SBA-15 composites during 3D printing: a SAXS study of the influence of processing parameters
spellingShingle Anisotropic recrystallization of PCL/SBA-15 composites during 3D printing: a SAXS study of the influence of processing parameters
Britto, Fiona Macarena
3D PRINTING
SAXS
POLYMER
ANISOTROPIC RECRYSTALLIZATION
title_short Anisotropic recrystallization of PCL/SBA-15 composites during 3D printing: a SAXS study of the influence of processing parameters
title_full Anisotropic recrystallization of PCL/SBA-15 composites during 3D printing: a SAXS study of the influence of processing parameters
title_fullStr Anisotropic recrystallization of PCL/SBA-15 composites during 3D printing: a SAXS study of the influence of processing parameters
title_full_unstemmed Anisotropic recrystallization of PCL/SBA-15 composites during 3D printing: a SAXS study of the influence of processing parameters
title_sort Anisotropic recrystallization of PCL/SBA-15 composites during 3D printing: a SAXS study of the influence of processing parameters
dc.creator.none.fl_str_mv Britto, Fiona Macarena
Huck Iriart, Cristián
de Vita, Fabián Darío
Alvarez, Vera Alejandra
Gutiérrez Carmona, Tomy José
Soler Illia, Galo Juan de Avila Arturo
author Britto, Fiona Macarena
author_facet Britto, Fiona Macarena
Huck Iriart, Cristián
de Vita, Fabián Darío
Alvarez, Vera Alejandra
Gutiérrez Carmona, Tomy José
Soler Illia, Galo Juan de Avila Arturo
author_role author
author2 Huck Iriart, Cristián
de Vita, Fabián Darío
Alvarez, Vera Alejandra
Gutiérrez Carmona, Tomy José
Soler Illia, Galo Juan de Avila Arturo
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv 3D PRINTING
SAXS
POLYMER
ANISOTROPIC RECRYSTALLIZATION
topic 3D PRINTING
SAXS
POLYMER
ANISOTROPIC RECRYSTALLIZATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/2.10
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Additive manufacturing represents nowadays one of the most disruptive technologies, both in academic and industrial fields. In this context, the design and 3D printing of biomimetic materials for tissue engineering and regenerative medicine applications have attracted a lot of attention. However, a key step that must be overcome in order to design and fabricate new functional materials is to have a better understanding about the effect of some process parameters on the final structure of materials. Recent works showed some interest in this area, and have investigated the structural evolution of PCL during 3D printing and the effect of particle alignment induced by extrusion-based 3D printing on final structural properties of 3D printed materials [1,2]. In the present work, mesoporous silica particles (SBA-15) were incorporated into a polycaprolactone (PCL) matrix through an extrusion-based process, to obtain a filament compatible with melt extrusion-based 3D printing systems. In order to study the effect of processing parameters and particle alignment on the polymer recrystallization, PCL and PCL/SBA-15 samples were printed using two different nozzle sizes, 0.25 mm and 0.40 mm. Structural characterization of PCL and PCL/SBA-15 3D-printed samples was performed by small-angle X-ray scattering (SAXS). Measurements were carried out using a Xeuss 2.0 (Xenocs, France) with a sample-to-detector distance of 1200 mm and λ = 0.154 nm which allowed us to study both the lamellar structure of PCL and the hexagonal pore structure of SBA-15. Analysis of 2D SAXS patterns showed that rod-like SBA-15 particles were aligned along the print direction, as expected. More interestingly, PCL presented anisotropic recrystallization, perpendicular to the print direction only in the presence of SBA-15 (anisotropic patterns were not observed when PCL samples were studied). Results indicate that melt extrusion-based 3D printing aligns high aspect ratio SBA-15 particles, which induces anisotropic recrystallization of PCL, and the alignment is dependent, for instance, on the nozzle size. To have a better understanding of the influence of processing parameters on the recrystallization and orientation of polymer crystals, we propose the use of CATERETÊ beamline at Sirius, in particular, the X-Ray Photon Correlation Spectroscopy (XPCS) facility. Since XPCS has proved to be an excellent technique to study polymer dynamics [3], we consider that this technique would shed some light on the anisotropic recrystallization of polymers in the presence of anisotropic particles.
Fil: Britto, Fiona Macarena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina
Fil: Huck Iriart, Cristián. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina
Fil: de Vita, Fabián Darío. Universidad Nacional de San Martin. Fundacion Argentina de Nanotecnologia.; Argentina
Fil: Alvarez, Vera Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Gutiérrez Carmona, Tomy José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Soler Illia, Galo Juan de Avila Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina
4th International User Workshop on Coherent X-ray Imaging and Small Angle X-ray Scattering
Campinas
Brasil
Brazilian Center for Research in Energy and Materials
Ministry of Science, Technology, Innovation and Communication
description Additive manufacturing represents nowadays one of the most disruptive technologies, both in academic and industrial fields. In this context, the design and 3D printing of biomimetic materials for tissue engineering and regenerative medicine applications have attracted a lot of attention. However, a key step that must be overcome in order to design and fabricate new functional materials is to have a better understanding about the effect of some process parameters on the final structure of materials. Recent works showed some interest in this area, and have investigated the structural evolution of PCL during 3D printing and the effect of particle alignment induced by extrusion-based 3D printing on final structural properties of 3D printed materials [1,2]. In the present work, mesoporous silica particles (SBA-15) were incorporated into a polycaprolactone (PCL) matrix through an extrusion-based process, to obtain a filament compatible with melt extrusion-based 3D printing systems. In order to study the effect of processing parameters and particle alignment on the polymer recrystallization, PCL and PCL/SBA-15 samples were printed using two different nozzle sizes, 0.25 mm and 0.40 mm. Structural characterization of PCL and PCL/SBA-15 3D-printed samples was performed by small-angle X-ray scattering (SAXS). Measurements were carried out using a Xeuss 2.0 (Xenocs, France) with a sample-to-detector distance of 1200 mm and λ = 0.154 nm which allowed us to study both the lamellar structure of PCL and the hexagonal pore structure of SBA-15. Analysis of 2D SAXS patterns showed that rod-like SBA-15 particles were aligned along the print direction, as expected. More interestingly, PCL presented anisotropic recrystallization, perpendicular to the print direction only in the presence of SBA-15 (anisotropic patterns were not observed when PCL samples were studied). Results indicate that melt extrusion-based 3D printing aligns high aspect ratio SBA-15 particles, which induces anisotropic recrystallization of PCL, and the alignment is dependent, for instance, on the nozzle size. To have a better understanding of the influence of processing parameters on the recrystallization and orientation of polymer crystals, we propose the use of CATERETÊ beamline at Sirius, in particular, the X-Ray Photon Correlation Spectroscopy (XPCS) facility. Since XPCS has proved to be an excellent technique to study polymer dynamics [3], we consider that this technique would shed some light on the anisotropic recrystallization of polymers in the presence of anisotropic particles.
publishDate 2020
dc.date.none.fl_str_mv 2020
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/conferenceObject
Workshop
Book
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
status_str publishedVersion
format conferenceObject
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/159939
Anisotropic recrystallization of PCL/SBA-15 composites during 3D printing: a SAXS study of the influence of processing parameters; 4th International User Workshop on Coherent X-ray Imaging and Small Angle X-ray Scattering; Campinas; Brasil; 2020; 5-5
CONICET Digital
CONICET
url http://hdl.handle.net/11336/159939
identifier_str_mv Anisotropic recrystallization of PCL/SBA-15 composites during 3D printing: a SAXS study of the influence of processing parameters; 4th International User Workshop on Coherent X-ray Imaging and Small Angle X-ray Scattering; Campinas; Brasil; 2020; 5-5
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://pages.cnpem.br/caterete-workshop/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.coverage.none.fl_str_mv Internacional
dc.publisher.none.fl_str_mv Brazilian Center for Research in Energy and Materials
publisher.none.fl_str_mv Brazilian Center for Research in Energy and Materials
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269001513697280
score 13.13397