Modeling the effect of subgrain rotation recrystallization on the evolution of olivine crystal preferred orientations in simple shear
- Autores
- Signorelli, Javier Walter; Tommasi, Andréa
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Homogenizationmodels are widely used to predict the evolution of texture (crystal preferred orientations) and resulting anisotropy of physical properties in metals, rocks, and ice. They fail, however, in predicting two main features of texture evolution in simple shear (the dominant deformation regime on Earth) for highly anisotropic crystals, like olivine: (1) the fast rotation of the CPO towards a stable position characterized by parallelism of the dominant slip system and the macroscopic shear and (2) the asymptotical evolution towards a constant intensity. To better predict CPO-induced anisotropy in the mantle, but limiting computational costs and use of poorly-constrained physical parameters, we modified a viscoplastic self-consistent code to simulate the effects of subgrain rotation recrystallization. To each crystal is associated a finite number of fragments (possible subgrains). Formation of a subgrain corresponds to introduction of a disorientation (relative to the parent) and resetting of the fragment strain and internal energy. The probability of formation of a subgrain is controlled by comparison between the local internal energy and the average value in the polycrystal. A two-level mechanical interaction scheme is applied for simulating the intracrystalline strain heterogeneity allowed by the formation of low-angle grain boundaries. Within a crystal, interactions between subgrains follow a constant stress scheme. The interactions between grains are simulated by a tangent viscoplastic self-consistent approach. This two-level approach better reproduces the evolution of olivine CPO in simple shear in experiments and nature. It also predicts a marked weakening at low shear strains, consistently with experimental data.
Fil: Signorelli, Javier Walter. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario (i); Argentina
Fil: Tommasi, Andréa. Universite Montpellier Ii; Francia - Materia
-
Olivine
Viscoplasticity
Recrystallization by Subgrain Rotation
Cpo - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/6140
Ver los metadatos del registro completo
id |
CONICETDig_3b636b8761ea1c026b6a1f4ae9f7c563 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/6140 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Modeling the effect of subgrain rotation recrystallization on the evolution of olivine crystal preferred orientations in simple shearSignorelli, Javier WalterTommasi, AndréaOlivineViscoplasticityRecrystallization by Subgrain RotationCpohttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Homogenizationmodels are widely used to predict the evolution of texture (crystal preferred orientations) and resulting anisotropy of physical properties in metals, rocks, and ice. They fail, however, in predicting two main features of texture evolution in simple shear (the dominant deformation regime on Earth) for highly anisotropic crystals, like olivine: (1) the fast rotation of the CPO towards a stable position characterized by parallelism of the dominant slip system and the macroscopic shear and (2) the asymptotical evolution towards a constant intensity. To better predict CPO-induced anisotropy in the mantle, but limiting computational costs and use of poorly-constrained physical parameters, we modified a viscoplastic self-consistent code to simulate the effects of subgrain rotation recrystallization. To each crystal is associated a finite number of fragments (possible subgrains). Formation of a subgrain corresponds to introduction of a disorientation (relative to the parent) and resetting of the fragment strain and internal energy. The probability of formation of a subgrain is controlled by comparison between the local internal energy and the average value in the polycrystal. A two-level mechanical interaction scheme is applied for simulating the intracrystalline strain heterogeneity allowed by the formation of low-angle grain boundaries. Within a crystal, interactions between subgrains follow a constant stress scheme. The interactions between grains are simulated by a tangent viscoplastic self-consistent approach. This two-level approach better reproduces the evolution of olivine CPO in simple shear in experiments and nature. It also predicts a marked weakening at low shear strains, consistently with experimental data.Fil: Signorelli, Javier Walter. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario (i); ArgentinaFil: Tommasi, Andréa. Universite Montpellier Ii; FranciaElsevier2015-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/6140Signorelli, Javier Walter; Tommasi, Andréa; Modeling the effect of subgrain rotation recrystallization on the evolution of olivine crystal preferred orientations in simple shear; Elsevier; Earth and Planetary Science Letters; 430; 8-2015; 356-3660012-821Xenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0012821X15005385info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/doi/10.1016/j.epsl.2015.08.018info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:43:24Zoai:ri.conicet.gov.ar:11336/6140instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:43:24.473CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Modeling the effect of subgrain rotation recrystallization on the evolution of olivine crystal preferred orientations in simple shear |
title |
Modeling the effect of subgrain rotation recrystallization on the evolution of olivine crystal preferred orientations in simple shear |
spellingShingle |
Modeling the effect of subgrain rotation recrystallization on the evolution of olivine crystal preferred orientations in simple shear Signorelli, Javier Walter Olivine Viscoplasticity Recrystallization by Subgrain Rotation Cpo |
title_short |
Modeling the effect of subgrain rotation recrystallization on the evolution of olivine crystal preferred orientations in simple shear |
title_full |
Modeling the effect of subgrain rotation recrystallization on the evolution of olivine crystal preferred orientations in simple shear |
title_fullStr |
Modeling the effect of subgrain rotation recrystallization on the evolution of olivine crystal preferred orientations in simple shear |
title_full_unstemmed |
Modeling the effect of subgrain rotation recrystallization on the evolution of olivine crystal preferred orientations in simple shear |
title_sort |
Modeling the effect of subgrain rotation recrystallization on the evolution of olivine crystal preferred orientations in simple shear |
dc.creator.none.fl_str_mv |
Signorelli, Javier Walter Tommasi, Andréa |
author |
Signorelli, Javier Walter |
author_facet |
Signorelli, Javier Walter Tommasi, Andréa |
author_role |
author |
author2 |
Tommasi, Andréa |
author2_role |
author |
dc.subject.none.fl_str_mv |
Olivine Viscoplasticity Recrystallization by Subgrain Rotation Cpo |
topic |
Olivine Viscoplasticity Recrystallization by Subgrain Rotation Cpo |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Homogenizationmodels are widely used to predict the evolution of texture (crystal preferred orientations) and resulting anisotropy of physical properties in metals, rocks, and ice. They fail, however, in predicting two main features of texture evolution in simple shear (the dominant deformation regime on Earth) for highly anisotropic crystals, like olivine: (1) the fast rotation of the CPO towards a stable position characterized by parallelism of the dominant slip system and the macroscopic shear and (2) the asymptotical evolution towards a constant intensity. To better predict CPO-induced anisotropy in the mantle, but limiting computational costs and use of poorly-constrained physical parameters, we modified a viscoplastic self-consistent code to simulate the effects of subgrain rotation recrystallization. To each crystal is associated a finite number of fragments (possible subgrains). Formation of a subgrain corresponds to introduction of a disorientation (relative to the parent) and resetting of the fragment strain and internal energy. The probability of formation of a subgrain is controlled by comparison between the local internal energy and the average value in the polycrystal. A two-level mechanical interaction scheme is applied for simulating the intracrystalline strain heterogeneity allowed by the formation of low-angle grain boundaries. Within a crystal, interactions between subgrains follow a constant stress scheme. The interactions between grains are simulated by a tangent viscoplastic self-consistent approach. This two-level approach better reproduces the evolution of olivine CPO in simple shear in experiments and nature. It also predicts a marked weakening at low shear strains, consistently with experimental data. Fil: Signorelli, Javier Walter. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario (i); Argentina Fil: Tommasi, Andréa. Universite Montpellier Ii; Francia |
description |
Homogenizationmodels are widely used to predict the evolution of texture (crystal preferred orientations) and resulting anisotropy of physical properties in metals, rocks, and ice. They fail, however, in predicting two main features of texture evolution in simple shear (the dominant deformation regime on Earth) for highly anisotropic crystals, like olivine: (1) the fast rotation of the CPO towards a stable position characterized by parallelism of the dominant slip system and the macroscopic shear and (2) the asymptotical evolution towards a constant intensity. To better predict CPO-induced anisotropy in the mantle, but limiting computational costs and use of poorly-constrained physical parameters, we modified a viscoplastic self-consistent code to simulate the effects of subgrain rotation recrystallization. To each crystal is associated a finite number of fragments (possible subgrains). Formation of a subgrain corresponds to introduction of a disorientation (relative to the parent) and resetting of the fragment strain and internal energy. The probability of formation of a subgrain is controlled by comparison between the local internal energy and the average value in the polycrystal. A two-level mechanical interaction scheme is applied for simulating the intracrystalline strain heterogeneity allowed by the formation of low-angle grain boundaries. Within a crystal, interactions between subgrains follow a constant stress scheme. The interactions between grains are simulated by a tangent viscoplastic self-consistent approach. This two-level approach better reproduces the evolution of olivine CPO in simple shear in experiments and nature. It also predicts a marked weakening at low shear strains, consistently with experimental data. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/6140 Signorelli, Javier Walter; Tommasi, Andréa; Modeling the effect of subgrain rotation recrystallization on the evolution of olivine crystal preferred orientations in simple shear; Elsevier; Earth and Planetary Science Letters; 430; 8-2015; 356-366 0012-821X |
url |
http://hdl.handle.net/11336/6140 |
identifier_str_mv |
Signorelli, Javier Walter; Tommasi, Andréa; Modeling the effect of subgrain rotation recrystallization on the evolution of olivine crystal preferred orientations in simple shear; Elsevier; Earth and Planetary Science Letters; 430; 8-2015; 356-366 0012-821X |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0012821X15005385 info:eu-repo/semantics/altIdentifier/doi/ info:eu-repo/semantics/altIdentifier/doi/10.1016/j.epsl.2015.08.018 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268599638556672 |
score |
13.13397 |