Diseño y simulación de un microinductor planar para un sensor telemétrico de presión intraocular
- Autores
- Pérez, María Cecilia; Reta, Juan Manuel; Guarnieri, Fabio Ariel
- Año de publicación
- 2009
- Idioma
- español castellano
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Motivación: Los microinductores permiten integrar la transmisión inalámbrica de energía en múltiples aplicaciones como sensores y actuadores en el campo biomédico. El uso de EF para el diseño de los microinductores permite considerar las restricciones geométricas y materiales utilizados por las técnicas de micro fabricación. Métodos: Se utilizan modelos 3D numéricos en EF junto con modelos circuitales para el análisis y diseño de una bobina de sección cuadrada. El modelo circuital considera la bobina de cobre depositada sobre un sustrato de silicio cubierta con una película aislante de dióxido de silicio. Los parámetros del modelo son la inductancia, la resistencia del conductor, la capacitancia parásita, y la resistencia del aislante. En el modelo numérico, la geometría consiste en el inductor en forma de espiral rodeado de aire. Las ecuaciones del modelo en EF son las ecuaciones de continuidad y magnetostática donde σ es la conductividad eléctrica, μ es la permeabilidad magnética, A es el vector potencial magnético, V el potencial eléctrico y Je el vector densidad de corriente generada externamente. Resultados: Se comparan los resultados obtenidos de inductancia a partir del modelo circuital con el numérico. Se realizan 3 diseños diferentes de microbobinas para optimizar el tamaño y la tecnología de micro fabricación.
Fil: Pérez, María Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Reta, Juan Manuel. Universidad Nacional de Entre Ríos; Argentina
Fil: Guarnieri, Fabio Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina - Materia
-
Microinductor
Microfabricación
Sensores de Presión Intraocular - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/26045
Ver los metadatos del registro completo
id |
CONICETDig_b2c349e17745e3fc7d5d3123d5f98d4c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/26045 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Diseño y simulación de un microinductor planar para un sensor telemétrico de presión intraocularPérez, María CeciliaReta, Juan ManuelGuarnieri, Fabio ArielMicroinductorMicrofabricaciónSensores de Presión Intraocularhttps://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2Motivación: Los microinductores permiten integrar la transmisión inalámbrica de energía en múltiples aplicaciones como sensores y actuadores en el campo biomédico. El uso de EF para el diseño de los microinductores permite considerar las restricciones geométricas y materiales utilizados por las técnicas de micro fabricación. Métodos: Se utilizan modelos 3D numéricos en EF junto con modelos circuitales para el análisis y diseño de una bobina de sección cuadrada. El modelo circuital considera la bobina de cobre depositada sobre un sustrato de silicio cubierta con una película aislante de dióxido de silicio. Los parámetros del modelo son la inductancia, la resistencia del conductor, la capacitancia parásita, y la resistencia del aislante. En el modelo numérico, la geometría consiste en el inductor en forma de espiral rodeado de aire. Las ecuaciones del modelo en EF son las ecuaciones de continuidad y magnetostática donde σ es la conductividad eléctrica, μ es la permeabilidad magnética, A es el vector potencial magnético, V el potencial eléctrico y Je el vector densidad de corriente generada externamente. Resultados: Se comparan los resultados obtenidos de inductancia a partir del modelo circuital con el numérico. Se realizan 3 diseños diferentes de microbobinas para optimizar el tamaño y la tecnología de micro fabricación.Fil: Pérez, María Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Reta, Juan Manuel. Universidad Nacional de Entre Ríos; ArgentinaFil: Guarnieri, Fabio Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; ArgentinaAsociación Argentina de Mecánica Computacional2009-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/26045Pérez, María Cecilia; Reta, Juan Manuel; Guarnieri, Fabio Ariel; Diseño y simulación de un microinductor planar para un sensor telemétrico de presión intraocular; Asociación Argentina de Mecánica Computacional; Mecánica Computacional; XXVIII; 25; 11-2009; 2101-21102591-3522CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/url/http://www.cimec.org.ar/ojs/index.php/mc/article/viewFile/2868info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:40:27Zoai:ri.conicet.gov.ar:11336/26045instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:40:28.16CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Diseño y simulación de un microinductor planar para un sensor telemétrico de presión intraocular |
title |
Diseño y simulación de un microinductor planar para un sensor telemétrico de presión intraocular |
spellingShingle |
Diseño y simulación de un microinductor planar para un sensor telemétrico de presión intraocular Pérez, María Cecilia Microinductor Microfabricación Sensores de Presión Intraocular |
title_short |
Diseño y simulación de un microinductor planar para un sensor telemétrico de presión intraocular |
title_full |
Diseño y simulación de un microinductor planar para un sensor telemétrico de presión intraocular |
title_fullStr |
Diseño y simulación de un microinductor planar para un sensor telemétrico de presión intraocular |
title_full_unstemmed |
Diseño y simulación de un microinductor planar para un sensor telemétrico de presión intraocular |
title_sort |
Diseño y simulación de un microinductor planar para un sensor telemétrico de presión intraocular |
dc.creator.none.fl_str_mv |
Pérez, María Cecilia Reta, Juan Manuel Guarnieri, Fabio Ariel |
author |
Pérez, María Cecilia |
author_facet |
Pérez, María Cecilia Reta, Juan Manuel Guarnieri, Fabio Ariel |
author_role |
author |
author2 |
Reta, Juan Manuel Guarnieri, Fabio Ariel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Microinductor Microfabricación Sensores de Presión Intraocular |
topic |
Microinductor Microfabricación Sensores de Presión Intraocular |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.10 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Motivación: Los microinductores permiten integrar la transmisión inalámbrica de energía en múltiples aplicaciones como sensores y actuadores en el campo biomédico. El uso de EF para el diseño de los microinductores permite considerar las restricciones geométricas y materiales utilizados por las técnicas de micro fabricación. Métodos: Se utilizan modelos 3D numéricos en EF junto con modelos circuitales para el análisis y diseño de una bobina de sección cuadrada. El modelo circuital considera la bobina de cobre depositada sobre un sustrato de silicio cubierta con una película aislante de dióxido de silicio. Los parámetros del modelo son la inductancia, la resistencia del conductor, la capacitancia parásita, y la resistencia del aislante. En el modelo numérico, la geometría consiste en el inductor en forma de espiral rodeado de aire. Las ecuaciones del modelo en EF son las ecuaciones de continuidad y magnetostática donde σ es la conductividad eléctrica, μ es la permeabilidad magnética, A es el vector potencial magnético, V el potencial eléctrico y Je el vector densidad de corriente generada externamente. Resultados: Se comparan los resultados obtenidos de inductancia a partir del modelo circuital con el numérico. Se realizan 3 diseños diferentes de microbobinas para optimizar el tamaño y la tecnología de micro fabricación. Fil: Pérez, María Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Reta, Juan Manuel. Universidad Nacional de Entre Ríos; Argentina Fil: Guarnieri, Fabio Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina |
description |
Motivación: Los microinductores permiten integrar la transmisión inalámbrica de energía en múltiples aplicaciones como sensores y actuadores en el campo biomédico. El uso de EF para el diseño de los microinductores permite considerar las restricciones geométricas y materiales utilizados por las técnicas de micro fabricación. Métodos: Se utilizan modelos 3D numéricos en EF junto con modelos circuitales para el análisis y diseño de una bobina de sección cuadrada. El modelo circuital considera la bobina de cobre depositada sobre un sustrato de silicio cubierta con una película aislante de dióxido de silicio. Los parámetros del modelo son la inductancia, la resistencia del conductor, la capacitancia parásita, y la resistencia del aislante. En el modelo numérico, la geometría consiste en el inductor en forma de espiral rodeado de aire. Las ecuaciones del modelo en EF son las ecuaciones de continuidad y magnetostática donde σ es la conductividad eléctrica, μ es la permeabilidad magnética, A es el vector potencial magnético, V el potencial eléctrico y Je el vector densidad de corriente generada externamente. Resultados: Se comparan los resultados obtenidos de inductancia a partir del modelo circuital con el numérico. Se realizan 3 diseños diferentes de microbobinas para optimizar el tamaño y la tecnología de micro fabricación. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/26045 Pérez, María Cecilia; Reta, Juan Manuel; Guarnieri, Fabio Ariel; Diseño y simulación de un microinductor planar para un sensor telemétrico de presión intraocular; Asociación Argentina de Mecánica Computacional; Mecánica Computacional; XXVIII; 25; 11-2009; 2101-2110 2591-3522 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/26045 |
identifier_str_mv |
Pérez, María Cecilia; Reta, Juan Manuel; Guarnieri, Fabio Ariel; Diseño y simulación de un microinductor planar para un sensor telemétrico de presión intraocular; Asociación Argentina de Mecánica Computacional; Mecánica Computacional; XXVIII; 25; 11-2009; 2101-2110 2591-3522 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.cimec.org.ar/ojs/index.php/mc/article/viewFile/2868 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Asociación Argentina de Mecánica Computacional |
publisher.none.fl_str_mv |
Asociación Argentina de Mecánica Computacional |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614432955564032 |
score |
13.070432 |