Probing the character of ultra-fast dislocations
- Autores
- Ruestes, Carlos Javier; Bringa, Eduardo Marcial; Rudd, R. E.; Remington, Bruce A.; Remington, T.P.; Meyers, Marc A.
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Plasticity is often controlled by dislocation motion, which was first measured for low pressure, low strain rate conditions decades ago. However, many applications require knowledge of dislocation motion at high stress conditions where the data are sparse, and come from indirect measurements dominated by the effect of dislocation density rather than velocity. Here we make predictions based on atomistic simulations that form the basis for a new approach to measure dislocation velocities directly at extreme conditions using three steps: create prismatic dislocation loops in a near-surface region using nanoindentation, drive the dislocations with a shockwave, and use electron microscopy to determine how far the dislocations moved and thus their velocity at extreme stress and strain rate conditions. We report on atomistic simulations of tantalum that make detailed predictions of dislocation flow, and find that the approach is feasible and can uncover an exciting range of phenomena, such as transonic dislocations and a novel form of loop stretching. The simulated configuration enables a new class of experiments to probe average dislocation velocity at very high applied shear stress.
Fil: Ruestes, Carlos Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Rudd, R. E.. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Remington, Bruce A.. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Remington, T.P.. University of California at San Diego; Estados Unidos
Fil: Meyers, Marc A.. University of California at San Diego; Estados Unidos - Materia
-
Dislocations
Supersonic
Molecular dynamicsn
Nanoindentation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/59756
Ver los metadatos del registro completo
id |
CONICETDig_b095657ce63b843c838626429bb475c2 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/59756 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Probing the character of ultra-fast dislocationsRuestes, Carlos JavierBringa, Eduardo MarcialRudd, R. E.Remington, Bruce A.Remington, T.P.Meyers, Marc A.DislocationsSupersonicMolecular dynamicsnNanoindentationhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Plasticity is often controlled by dislocation motion, which was first measured for low pressure, low strain rate conditions decades ago. However, many applications require knowledge of dislocation motion at high stress conditions where the data are sparse, and come from indirect measurements dominated by the effect of dislocation density rather than velocity. Here we make predictions based on atomistic simulations that form the basis for a new approach to measure dislocation velocities directly at extreme conditions using three steps: create prismatic dislocation loops in a near-surface region using nanoindentation, drive the dislocations with a shockwave, and use electron microscopy to determine how far the dislocations moved and thus their velocity at extreme stress and strain rate conditions. We report on atomistic simulations of tantalum that make detailed predictions of dislocation flow, and find that the approach is feasible and can uncover an exciting range of phenomena, such as transonic dislocations and a novel form of loop stretching. The simulated configuration enables a new class of experiments to probe average dislocation velocity at very high applied shear stress.Fil: Ruestes, Carlos Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Rudd, R. E.. Lawrence Livermore National Laboratory; Estados UnidosFil: Remington, Bruce A.. Lawrence Livermore National Laboratory; Estados UnidosFil: Remington, T.P.. University of California at San Diego; Estados UnidosFil: Meyers, Marc A.. University of California at San Diego; Estados UnidosNature Publishing Group2015-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/59756Ruestes, Carlos Javier; Bringa, Eduardo Marcial; Rudd, R. E.; Remington, Bruce A.; Remington, T.P.; et al.; Probing the character of ultra-fast dislocations; Nature Publishing Group; Scientific Reports; 5; 6892; 11-2015; 1-92045-2322CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1038/srep16892info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/srep16892info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:52:49Zoai:ri.conicet.gov.ar:11336/59756instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:52:49.42CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Probing the character of ultra-fast dislocations |
title |
Probing the character of ultra-fast dislocations |
spellingShingle |
Probing the character of ultra-fast dislocations Ruestes, Carlos Javier Dislocations Supersonic Molecular dynamicsn Nanoindentation |
title_short |
Probing the character of ultra-fast dislocations |
title_full |
Probing the character of ultra-fast dislocations |
title_fullStr |
Probing the character of ultra-fast dislocations |
title_full_unstemmed |
Probing the character of ultra-fast dislocations |
title_sort |
Probing the character of ultra-fast dislocations |
dc.creator.none.fl_str_mv |
Ruestes, Carlos Javier Bringa, Eduardo Marcial Rudd, R. E. Remington, Bruce A. Remington, T.P. Meyers, Marc A. |
author |
Ruestes, Carlos Javier |
author_facet |
Ruestes, Carlos Javier Bringa, Eduardo Marcial Rudd, R. E. Remington, Bruce A. Remington, T.P. Meyers, Marc A. |
author_role |
author |
author2 |
Bringa, Eduardo Marcial Rudd, R. E. Remington, Bruce A. Remington, T.P. Meyers, Marc A. |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Dislocations Supersonic Molecular dynamicsn Nanoindentation |
topic |
Dislocations Supersonic Molecular dynamicsn Nanoindentation |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Plasticity is often controlled by dislocation motion, which was first measured for low pressure, low strain rate conditions decades ago. However, many applications require knowledge of dislocation motion at high stress conditions where the data are sparse, and come from indirect measurements dominated by the effect of dislocation density rather than velocity. Here we make predictions based on atomistic simulations that form the basis for a new approach to measure dislocation velocities directly at extreme conditions using three steps: create prismatic dislocation loops in a near-surface region using nanoindentation, drive the dislocations with a shockwave, and use electron microscopy to determine how far the dislocations moved and thus their velocity at extreme stress and strain rate conditions. We report on atomistic simulations of tantalum that make detailed predictions of dislocation flow, and find that the approach is feasible and can uncover an exciting range of phenomena, such as transonic dislocations and a novel form of loop stretching. The simulated configuration enables a new class of experiments to probe average dislocation velocity at very high applied shear stress. Fil: Ruestes, Carlos Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina Fil: Rudd, R. E.. Lawrence Livermore National Laboratory; Estados Unidos Fil: Remington, Bruce A.. Lawrence Livermore National Laboratory; Estados Unidos Fil: Remington, T.P.. University of California at San Diego; Estados Unidos Fil: Meyers, Marc A.. University of California at San Diego; Estados Unidos |
description |
Plasticity is often controlled by dislocation motion, which was first measured for low pressure, low strain rate conditions decades ago. However, many applications require knowledge of dislocation motion at high stress conditions where the data are sparse, and come from indirect measurements dominated by the effect of dislocation density rather than velocity. Here we make predictions based on atomistic simulations that form the basis for a new approach to measure dislocation velocities directly at extreme conditions using three steps: create prismatic dislocation loops in a near-surface region using nanoindentation, drive the dislocations with a shockwave, and use electron microscopy to determine how far the dislocations moved and thus their velocity at extreme stress and strain rate conditions. We report on atomistic simulations of tantalum that make detailed predictions of dislocation flow, and find that the approach is feasible and can uncover an exciting range of phenomena, such as transonic dislocations and a novel form of loop stretching. The simulated configuration enables a new class of experiments to probe average dislocation velocity at very high applied shear stress. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/59756 Ruestes, Carlos Javier; Bringa, Eduardo Marcial; Rudd, R. E.; Remington, Bruce A.; Remington, T.P.; et al.; Probing the character of ultra-fast dislocations; Nature Publishing Group; Scientific Reports; 5; 6892; 11-2015; 1-9 2045-2322 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/59756 |
identifier_str_mv |
Ruestes, Carlos Javier; Bringa, Eduardo Marcial; Rudd, R. E.; Remington, Bruce A.; Remington, T.P.; et al.; Probing the character of ultra-fast dislocations; Nature Publishing Group; Scientific Reports; 5; 6892; 11-2015; 1-9 2045-2322 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1038/srep16892 info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/srep16892 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Nature Publishing Group |
publisher.none.fl_str_mv |
Nature Publishing Group |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083057111531520 |
score |
13.22299 |