Probing the character of ultra-fast dislocations

Autores
Ruestes, Carlos Javier; Bringa, Eduardo Marcial; Rudd, R. E.; Remington, Bruce A.; Remington, T.P.; Meyers, Marc A.
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Plasticity is often controlled by dislocation motion, which was first measured for low pressure, low strain rate conditions decades ago. However, many applications require knowledge of dislocation motion at high stress conditions where the data are sparse, and come from indirect measurements dominated by the effect of dislocation density rather than velocity. Here we make predictions based on atomistic simulations that form the basis for a new approach to measure dislocation velocities directly at extreme conditions using three steps: create prismatic dislocation loops in a near-surface region using nanoindentation, drive the dislocations with a shockwave, and use electron microscopy to determine how far the dislocations moved and thus their velocity at extreme stress and strain rate conditions. We report on atomistic simulations of tantalum that make detailed predictions of dislocation flow, and find that the approach is feasible and can uncover an exciting range of phenomena, such as transonic dislocations and a novel form of loop stretching. The simulated configuration enables a new class of experiments to probe average dislocation velocity at very high applied shear stress.
Fil: Ruestes, Carlos Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Rudd, R. E.. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Remington, Bruce A.. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Remington, T.P.. University of California at San Diego; Estados Unidos
Fil: Meyers, Marc A.. University of California at San Diego; Estados Unidos
Materia
Dislocations
Supersonic
Molecular dynamicsn
Nanoindentation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/59756

id CONICETDig_b095657ce63b843c838626429bb475c2
oai_identifier_str oai:ri.conicet.gov.ar:11336/59756
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Probing the character of ultra-fast dislocationsRuestes, Carlos JavierBringa, Eduardo MarcialRudd, R. E.Remington, Bruce A.Remington, T.P.Meyers, Marc A.DislocationsSupersonicMolecular dynamicsnNanoindentationhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Plasticity is often controlled by dislocation motion, which was first measured for low pressure, low strain rate conditions decades ago. However, many applications require knowledge of dislocation motion at high stress conditions where the data are sparse, and come from indirect measurements dominated by the effect of dislocation density rather than velocity. Here we make predictions based on atomistic simulations that form the basis for a new approach to measure dislocation velocities directly at extreme conditions using three steps: create prismatic dislocation loops in a near-surface region using nanoindentation, drive the dislocations with a shockwave, and use electron microscopy to determine how far the dislocations moved and thus their velocity at extreme stress and strain rate conditions. We report on atomistic simulations of tantalum that make detailed predictions of dislocation flow, and find that the approach is feasible and can uncover an exciting range of phenomena, such as transonic dislocations and a novel form of loop stretching. The simulated configuration enables a new class of experiments to probe average dislocation velocity at very high applied shear stress.Fil: Ruestes, Carlos Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Rudd, R. E.. Lawrence Livermore National Laboratory; Estados UnidosFil: Remington, Bruce A.. Lawrence Livermore National Laboratory; Estados UnidosFil: Remington, T.P.. University of California at San Diego; Estados UnidosFil: Meyers, Marc A.. University of California at San Diego; Estados UnidosNature Publishing Group2015-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/59756Ruestes, Carlos Javier; Bringa, Eduardo Marcial; Rudd, R. E.; Remington, Bruce A.; Remington, T.P.; et al.; Probing the character of ultra-fast dislocations; Nature Publishing Group; Scientific Reports; 5; 6892; 11-2015; 1-92045-2322CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1038/srep16892info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/srep16892info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:52:49Zoai:ri.conicet.gov.ar:11336/59756instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:52:49.42CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Probing the character of ultra-fast dislocations
title Probing the character of ultra-fast dislocations
spellingShingle Probing the character of ultra-fast dislocations
Ruestes, Carlos Javier
Dislocations
Supersonic
Molecular dynamicsn
Nanoindentation
title_short Probing the character of ultra-fast dislocations
title_full Probing the character of ultra-fast dislocations
title_fullStr Probing the character of ultra-fast dislocations
title_full_unstemmed Probing the character of ultra-fast dislocations
title_sort Probing the character of ultra-fast dislocations
dc.creator.none.fl_str_mv Ruestes, Carlos Javier
Bringa, Eduardo Marcial
Rudd, R. E.
Remington, Bruce A.
Remington, T.P.
Meyers, Marc A.
author Ruestes, Carlos Javier
author_facet Ruestes, Carlos Javier
Bringa, Eduardo Marcial
Rudd, R. E.
Remington, Bruce A.
Remington, T.P.
Meyers, Marc A.
author_role author
author2 Bringa, Eduardo Marcial
Rudd, R. E.
Remington, Bruce A.
Remington, T.P.
Meyers, Marc A.
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Dislocations
Supersonic
Molecular dynamicsn
Nanoindentation
topic Dislocations
Supersonic
Molecular dynamicsn
Nanoindentation
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Plasticity is often controlled by dislocation motion, which was first measured for low pressure, low strain rate conditions decades ago. However, many applications require knowledge of dislocation motion at high stress conditions where the data are sparse, and come from indirect measurements dominated by the effect of dislocation density rather than velocity. Here we make predictions based on atomistic simulations that form the basis for a new approach to measure dislocation velocities directly at extreme conditions using three steps: create prismatic dislocation loops in a near-surface region using nanoindentation, drive the dislocations with a shockwave, and use electron microscopy to determine how far the dislocations moved and thus their velocity at extreme stress and strain rate conditions. We report on atomistic simulations of tantalum that make detailed predictions of dislocation flow, and find that the approach is feasible and can uncover an exciting range of phenomena, such as transonic dislocations and a novel form of loop stretching. The simulated configuration enables a new class of experiments to probe average dislocation velocity at very high applied shear stress.
Fil: Ruestes, Carlos Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Rudd, R. E.. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Remington, Bruce A.. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Remington, T.P.. University of California at San Diego; Estados Unidos
Fil: Meyers, Marc A.. University of California at San Diego; Estados Unidos
description Plasticity is often controlled by dislocation motion, which was first measured for low pressure, low strain rate conditions decades ago. However, many applications require knowledge of dislocation motion at high stress conditions where the data are sparse, and come from indirect measurements dominated by the effect of dislocation density rather than velocity. Here we make predictions based on atomistic simulations that form the basis for a new approach to measure dislocation velocities directly at extreme conditions using three steps: create prismatic dislocation loops in a near-surface region using nanoindentation, drive the dislocations with a shockwave, and use electron microscopy to determine how far the dislocations moved and thus their velocity at extreme stress and strain rate conditions. We report on atomistic simulations of tantalum that make detailed predictions of dislocation flow, and find that the approach is feasible and can uncover an exciting range of phenomena, such as transonic dislocations and a novel form of loop stretching. The simulated configuration enables a new class of experiments to probe average dislocation velocity at very high applied shear stress.
publishDate 2015
dc.date.none.fl_str_mv 2015-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/59756
Ruestes, Carlos Javier; Bringa, Eduardo Marcial; Rudd, R. E.; Remington, Bruce A.; Remington, T.P.; et al.; Probing the character of ultra-fast dislocations; Nature Publishing Group; Scientific Reports; 5; 6892; 11-2015; 1-9
2045-2322
CONICET Digital
CONICET
url http://hdl.handle.net/11336/59756
identifier_str_mv Ruestes, Carlos Javier; Bringa, Eduardo Marcial; Rudd, R. E.; Remington, Bruce A.; Remington, T.P.; et al.; Probing the character of ultra-fast dislocations; Nature Publishing Group; Scientific Reports; 5; 6892; 11-2015; 1-9
2045-2322
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1038/srep16892
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/srep16892
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Nature Publishing Group
publisher.none.fl_str_mv Nature Publishing Group
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083057111531520
score 13.22299