Nanoindentation and nanoscratching of iron: Atomistic simulation of dislocation generation and reactions

Autores
Gao, Yu; Ruestes, Carlos Javier; Urbassek, Herbert M.
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Using molecular-dynamics simulation, we study nanoindentation and scratching in an Fe (1 0 0) surface. We find an indentation hardness of 20 GPa in good agreement with experiment and previous simulations. The length of the dislocations generated and the volume of the plastic zone follow a simple model based on the dislocations necessary to remove the material from the indentation zone, the so-called geometrically necessary dislocations. The dislocation density stays approximately constant. Both b=1/2(111) and b=(100) dislocations contribute to the plastic zone. During scratching, we observe a distinct re-organization of the dislocation network; the reaction of b=1/2(111) to b=(100) dislocations plays an important role. After longer scratching the dislocations in the middle of the scratch groove react and the dislocation density there is strongly reduced; all further dislocation activity occurs at the scratch front. Deformation twinning is observed both in the indentation and in the scratch stage. Both normal and lateral scratch hardness decrease with depth, while the friction coefficient shows a strong increase.
Fil: Gao, Yu. University Of Kaiserlautern; Alemania
Fil: Ruestes, Carlos Javier. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Urbassek, Herbert M.. University Of Kaiserlautern; Alemania
Materia
Dislocations
Iron
Molecular Dynamics
Nanoindentation
Nanoscratching
Plasticity
Twinning
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/38953

id CONICETDig_0e6c8103f30bcfd09367cf8abdddc6c1
oai_identifier_str oai:ri.conicet.gov.ar:11336/38953
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Nanoindentation and nanoscratching of iron: Atomistic simulation of dislocation generation and reactionsGao, YuRuestes, Carlos JavierUrbassek, Herbert M.DislocationsIronMolecular DynamicsNanoindentationNanoscratchingPlasticityTwinninghttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Using molecular-dynamics simulation, we study nanoindentation and scratching in an Fe (1 0 0) surface. We find an indentation hardness of 20 GPa in good agreement with experiment and previous simulations. The length of the dislocations generated and the volume of the plastic zone follow a simple model based on the dislocations necessary to remove the material from the indentation zone, the so-called geometrically necessary dislocations. The dislocation density stays approximately constant. Both b=1/2(111) and b=(100) dislocations contribute to the plastic zone. During scratching, we observe a distinct re-organization of the dislocation network; the reaction of b=1/2(111) to b=(100) dislocations plays an important role. After longer scratching the dislocations in the middle of the scratch groove react and the dislocation density there is strongly reduced; all further dislocation activity occurs at the scratch front. Deformation twinning is observed both in the indentation and in the scratch stage. Both normal and lateral scratch hardness decrease with depth, while the friction coefficient shows a strong increase.Fil: Gao, Yu. University Of Kaiserlautern; AlemaniaFil: Ruestes, Carlos Javier. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Urbassek, Herbert M.. University Of Kaiserlautern; AlemaniaElsevier Science2014-05-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/38953Gao, Yu; Ruestes, Carlos Javier; Urbassek, Herbert M.; Nanoindentation and nanoscratching of iron: Atomistic simulation of dislocation generation and reactions; Elsevier Science; Computacional Materials Science; 90; 8-5-2014; 232-2400927-0256CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0927025614002596info:eu-repo/semantics/altIdentifier/doi/10.1016/j.commatsci.2014.04.027info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:04:02Zoai:ri.conicet.gov.ar:11336/38953instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:04:02.949CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Nanoindentation and nanoscratching of iron: Atomistic simulation of dislocation generation and reactions
title Nanoindentation and nanoscratching of iron: Atomistic simulation of dislocation generation and reactions
spellingShingle Nanoindentation and nanoscratching of iron: Atomistic simulation of dislocation generation and reactions
Gao, Yu
Dislocations
Iron
Molecular Dynamics
Nanoindentation
Nanoscratching
Plasticity
Twinning
title_short Nanoindentation and nanoscratching of iron: Atomistic simulation of dislocation generation and reactions
title_full Nanoindentation and nanoscratching of iron: Atomistic simulation of dislocation generation and reactions
title_fullStr Nanoindentation and nanoscratching of iron: Atomistic simulation of dislocation generation and reactions
title_full_unstemmed Nanoindentation and nanoscratching of iron: Atomistic simulation of dislocation generation and reactions
title_sort Nanoindentation and nanoscratching of iron: Atomistic simulation of dislocation generation and reactions
dc.creator.none.fl_str_mv Gao, Yu
Ruestes, Carlos Javier
Urbassek, Herbert M.
author Gao, Yu
author_facet Gao, Yu
Ruestes, Carlos Javier
Urbassek, Herbert M.
author_role author
author2 Ruestes, Carlos Javier
Urbassek, Herbert M.
author2_role author
author
dc.subject.none.fl_str_mv Dislocations
Iron
Molecular Dynamics
Nanoindentation
Nanoscratching
Plasticity
Twinning
topic Dislocations
Iron
Molecular Dynamics
Nanoindentation
Nanoscratching
Plasticity
Twinning
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Using molecular-dynamics simulation, we study nanoindentation and scratching in an Fe (1 0 0) surface. We find an indentation hardness of 20 GPa in good agreement with experiment and previous simulations. The length of the dislocations generated and the volume of the plastic zone follow a simple model based on the dislocations necessary to remove the material from the indentation zone, the so-called geometrically necessary dislocations. The dislocation density stays approximately constant. Both b=1/2(111) and b=(100) dislocations contribute to the plastic zone. During scratching, we observe a distinct re-organization of the dislocation network; the reaction of b=1/2(111) to b=(100) dislocations plays an important role. After longer scratching the dislocations in the middle of the scratch groove react and the dislocation density there is strongly reduced; all further dislocation activity occurs at the scratch front. Deformation twinning is observed both in the indentation and in the scratch stage. Both normal and lateral scratch hardness decrease with depth, while the friction coefficient shows a strong increase.
Fil: Gao, Yu. University Of Kaiserlautern; Alemania
Fil: Ruestes, Carlos Javier. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Urbassek, Herbert M.. University Of Kaiserlautern; Alemania
description Using molecular-dynamics simulation, we study nanoindentation and scratching in an Fe (1 0 0) surface. We find an indentation hardness of 20 GPa in good agreement with experiment and previous simulations. The length of the dislocations generated and the volume of the plastic zone follow a simple model based on the dislocations necessary to remove the material from the indentation zone, the so-called geometrically necessary dislocations. The dislocation density stays approximately constant. Both b=1/2(111) and b=(100) dislocations contribute to the plastic zone. During scratching, we observe a distinct re-organization of the dislocation network; the reaction of b=1/2(111) to b=(100) dislocations plays an important role. After longer scratching the dislocations in the middle of the scratch groove react and the dislocation density there is strongly reduced; all further dislocation activity occurs at the scratch front. Deformation twinning is observed both in the indentation and in the scratch stage. Both normal and lateral scratch hardness decrease with depth, while the friction coefficient shows a strong increase.
publishDate 2014
dc.date.none.fl_str_mv 2014-05-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/38953
Gao, Yu; Ruestes, Carlos Javier; Urbassek, Herbert M.; Nanoindentation and nanoscratching of iron: Atomistic simulation of dislocation generation and reactions; Elsevier Science; Computacional Materials Science; 90; 8-5-2014; 232-240
0927-0256
CONICET Digital
CONICET
url http://hdl.handle.net/11336/38953
identifier_str_mv Gao, Yu; Ruestes, Carlos Javier; Urbassek, Herbert M.; Nanoindentation and nanoscratching of iron: Atomistic simulation of dislocation generation and reactions; Elsevier Science; Computacional Materials Science; 90; 8-5-2014; 232-240
0927-0256
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0927025614002596
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.commatsci.2014.04.027
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269833741205504
score 13.13397