A Machine Learning Approach to Personalize Computerized Cognitive Training Interventions
- Autores
- Vladisauskas, Melina; Belloli, Laouen Mayal Louan; Fernandez Slezak, Diego; Goldin, Andrea Paula
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Executive functions are a class of cognitive processes critical for purposeful goal-directed behavior. Cognitive training is the adequate stimulation of executive functions and has been extensively studied and applied for more than 20 years. However, there is still a lack of solid consensus in the scientific community about its potential to elicit consistent improvements in untrained domains. Individual differences are considered one of the most important factors of inconsistent reports on cognitive training benefits, as differences in cognitive functioning are both genetic and context-dependent, and might be affected by age and socioeconomic status. We here present a proof of concept based on the hypothesis that baseline individual differences among subjects would provide valuable information to predict the individual effectiveness of a cognitive training intervention. With a dataset from an investigation in which 73 6-year-olds trained their executive functions using an online software with a fixed protocol, freely available at www.matemarote.org.ar, we trained a support vector classifier that successfully predicted (average accuracy = 0.67, AUC = 0.707) whether a child would improve, or not, after the cognitive stimulation, using baseline individual differences as features. We also performed a permutation feature importance analysis that suggested that all features contribute equally to the model's performance. In the long term, this results might allow us to design better training strategies for those players who are less likely to benefit from the current training protocols in order to maximize the stimulation for each child.
Fil: Vladisauskas, Melina. Universidad Torcuato Di Tella; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Belloli, Laouen Mayal Louan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Fernandez Slezak, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Goldin, Andrea Paula. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella; Argentina - Materia
-
CHILDREN
COMPUTERIZED GAMES
EDUCATIONAL GAMES
EDUCATIONAL NEUROSCIENCE
INDIVIDUAL DIFFERENCES
MACHINE LEARNING
PERSONALIZED TRAINING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/161030
Ver los metadatos del registro completo
id |
CONICETDig_b05e2e56789a55d86c50dc1dfb23d669 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/161030 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A Machine Learning Approach to Personalize Computerized Cognitive Training InterventionsVladisauskas, MelinaBelloli, Laouen Mayal LouanFernandez Slezak, DiegoGoldin, Andrea PaulaCHILDRENCOMPUTERIZED GAMESEDUCATIONAL GAMESEDUCATIONAL NEUROSCIENCEINDIVIDUAL DIFFERENCESMACHINE LEARNINGPERSONALIZED TRAININGhttps://purl.org/becyt/ford/1.7https://purl.org/becyt/ford/1Executive functions are a class of cognitive processes critical for purposeful goal-directed behavior. Cognitive training is the adequate stimulation of executive functions and has been extensively studied and applied for more than 20 years. However, there is still a lack of solid consensus in the scientific community about its potential to elicit consistent improvements in untrained domains. Individual differences are considered one of the most important factors of inconsistent reports on cognitive training benefits, as differences in cognitive functioning are both genetic and context-dependent, and might be affected by age and socioeconomic status. We here present a proof of concept based on the hypothesis that baseline individual differences among subjects would provide valuable information to predict the individual effectiveness of a cognitive training intervention. With a dataset from an investigation in which 73 6-year-olds trained their executive functions using an online software with a fixed protocol, freely available at www.matemarote.org.ar, we trained a support vector classifier that successfully predicted (average accuracy = 0.67, AUC = 0.707) whether a child would improve, or not, after the cognitive stimulation, using baseline individual differences as features. We also performed a permutation feature importance analysis that suggested that all features contribute equally to the model's performance. In the long term, this results might allow us to design better training strategies for those players who are less likely to benefit from the current training protocols in order to maximize the stimulation for each child.Fil: Vladisauskas, Melina. Universidad Torcuato Di Tella; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Belloli, Laouen Mayal Louan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Fernandez Slezak, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Goldin, Andrea Paula. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella; ArgentinaFrontiers Media2022-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/161030Vladisauskas, Melina; Belloli, Laouen Mayal Louan; Fernandez Slezak, Diego; Goldin, Andrea Paula; A Machine Learning Approach to Personalize Computerized Cognitive Training Interventions; Frontiers Media; Frontiers in Artificial Intelligence; 5; 3-2022; 1-72624-8212CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/frai.2022.788605/fullinfo:eu-repo/semantics/altIdentifier/doi/10.3389/frai.2022.788605info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:29:36Zoai:ri.conicet.gov.ar:11336/161030instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:29:37.002CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A Machine Learning Approach to Personalize Computerized Cognitive Training Interventions |
title |
A Machine Learning Approach to Personalize Computerized Cognitive Training Interventions |
spellingShingle |
A Machine Learning Approach to Personalize Computerized Cognitive Training Interventions Vladisauskas, Melina CHILDREN COMPUTERIZED GAMES EDUCATIONAL GAMES EDUCATIONAL NEUROSCIENCE INDIVIDUAL DIFFERENCES MACHINE LEARNING PERSONALIZED TRAINING |
title_short |
A Machine Learning Approach to Personalize Computerized Cognitive Training Interventions |
title_full |
A Machine Learning Approach to Personalize Computerized Cognitive Training Interventions |
title_fullStr |
A Machine Learning Approach to Personalize Computerized Cognitive Training Interventions |
title_full_unstemmed |
A Machine Learning Approach to Personalize Computerized Cognitive Training Interventions |
title_sort |
A Machine Learning Approach to Personalize Computerized Cognitive Training Interventions |
dc.creator.none.fl_str_mv |
Vladisauskas, Melina Belloli, Laouen Mayal Louan Fernandez Slezak, Diego Goldin, Andrea Paula |
author |
Vladisauskas, Melina |
author_facet |
Vladisauskas, Melina Belloli, Laouen Mayal Louan Fernandez Slezak, Diego Goldin, Andrea Paula |
author_role |
author |
author2 |
Belloli, Laouen Mayal Louan Fernandez Slezak, Diego Goldin, Andrea Paula |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
CHILDREN COMPUTERIZED GAMES EDUCATIONAL GAMES EDUCATIONAL NEUROSCIENCE INDIVIDUAL DIFFERENCES MACHINE LEARNING PERSONALIZED TRAINING |
topic |
CHILDREN COMPUTERIZED GAMES EDUCATIONAL GAMES EDUCATIONAL NEUROSCIENCE INDIVIDUAL DIFFERENCES MACHINE LEARNING PERSONALIZED TRAINING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.7 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Executive functions are a class of cognitive processes critical for purposeful goal-directed behavior. Cognitive training is the adequate stimulation of executive functions and has been extensively studied and applied for more than 20 years. However, there is still a lack of solid consensus in the scientific community about its potential to elicit consistent improvements in untrained domains. Individual differences are considered one of the most important factors of inconsistent reports on cognitive training benefits, as differences in cognitive functioning are both genetic and context-dependent, and might be affected by age and socioeconomic status. We here present a proof of concept based on the hypothesis that baseline individual differences among subjects would provide valuable information to predict the individual effectiveness of a cognitive training intervention. With a dataset from an investigation in which 73 6-year-olds trained their executive functions using an online software with a fixed protocol, freely available at www.matemarote.org.ar, we trained a support vector classifier that successfully predicted (average accuracy = 0.67, AUC = 0.707) whether a child would improve, or not, after the cognitive stimulation, using baseline individual differences as features. We also performed a permutation feature importance analysis that suggested that all features contribute equally to the model's performance. In the long term, this results might allow us to design better training strategies for those players who are less likely to benefit from the current training protocols in order to maximize the stimulation for each child. Fil: Vladisauskas, Melina. Universidad Torcuato Di Tella; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Belloli, Laouen Mayal Louan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina Fil: Fernandez Slezak, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina Fil: Goldin, Andrea Paula. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella; Argentina |
description |
Executive functions are a class of cognitive processes critical for purposeful goal-directed behavior. Cognitive training is the adequate stimulation of executive functions and has been extensively studied and applied for more than 20 years. However, there is still a lack of solid consensus in the scientific community about its potential to elicit consistent improvements in untrained domains. Individual differences are considered one of the most important factors of inconsistent reports on cognitive training benefits, as differences in cognitive functioning are both genetic and context-dependent, and might be affected by age and socioeconomic status. We here present a proof of concept based on the hypothesis that baseline individual differences among subjects would provide valuable information to predict the individual effectiveness of a cognitive training intervention. With a dataset from an investigation in which 73 6-year-olds trained their executive functions using an online software with a fixed protocol, freely available at www.matemarote.org.ar, we trained a support vector classifier that successfully predicted (average accuracy = 0.67, AUC = 0.707) whether a child would improve, or not, after the cognitive stimulation, using baseline individual differences as features. We also performed a permutation feature importance analysis that suggested that all features contribute equally to the model's performance. In the long term, this results might allow us to design better training strategies for those players who are less likely to benefit from the current training protocols in order to maximize the stimulation for each child. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/161030 Vladisauskas, Melina; Belloli, Laouen Mayal Louan; Fernandez Slezak, Diego; Goldin, Andrea Paula; A Machine Learning Approach to Personalize Computerized Cognitive Training Interventions; Frontiers Media; Frontiers in Artificial Intelligence; 5; 3-2022; 1-7 2624-8212 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/161030 |
identifier_str_mv |
Vladisauskas, Melina; Belloli, Laouen Mayal Louan; Fernandez Slezak, Diego; Goldin, Andrea Paula; A Machine Learning Approach to Personalize Computerized Cognitive Training Interventions; Frontiers Media; Frontiers in Artificial Intelligence; 5; 3-2022; 1-7 2624-8212 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/frai.2022.788605/full info:eu-repo/semantics/altIdentifier/doi/10.3389/frai.2022.788605 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Frontiers Media |
publisher.none.fl_str_mv |
Frontiers Media |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614302808408064 |
score |
13.070432 |