A Machine Learning Approach to Personalize Computerized Cognitive Training Interventions

Autores
Vladisauskas, Melina; Belloli, Laouen Mayal Louan; Fernandez Slezak, Diego; Goldin, Andrea Paula
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Executive functions are a class of cognitive processes critical for purposeful goal-directed behavior. Cognitive training is the adequate stimulation of executive functions and has been extensively studied and applied for more than 20 years. However, there is still a lack of solid consensus in the scientific community about its potential to elicit consistent improvements in untrained domains. Individual differences are considered one of the most important factors of inconsistent reports on cognitive training benefits, as differences in cognitive functioning are both genetic and context-dependent, and might be affected by age and socioeconomic status. We here present a proof of concept based on the hypothesis that baseline individual differences among subjects would provide valuable information to predict the individual effectiveness of a cognitive training intervention. With a dataset from an investigation in which 73 6-year-olds trained their executive functions using an online software with a fixed protocol, freely available at www.matemarote.org.ar, we trained a support vector classifier that successfully predicted (average accuracy = 0.67, AUC = 0.707) whether a child would improve, or not, after the cognitive stimulation, using baseline individual differences as features. We also performed a permutation feature importance analysis that suggested that all features contribute equally to the model's performance. In the long term, this results might allow us to design better training strategies for those players who are less likely to benefit from the current training protocols in order to maximize the stimulation for each child.
Fil: Vladisauskas, Melina. Universidad Torcuato Di Tella; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Belloli, Laouen Mayal Louan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Fernandez Slezak, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Goldin, Andrea Paula. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella; Argentina
Materia
CHILDREN
COMPUTERIZED GAMES
EDUCATIONAL GAMES
EDUCATIONAL NEUROSCIENCE
INDIVIDUAL DIFFERENCES
MACHINE LEARNING
PERSONALIZED TRAINING
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/161030

id CONICETDig_b05e2e56789a55d86c50dc1dfb23d669
oai_identifier_str oai:ri.conicet.gov.ar:11336/161030
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A Machine Learning Approach to Personalize Computerized Cognitive Training InterventionsVladisauskas, MelinaBelloli, Laouen Mayal LouanFernandez Slezak, DiegoGoldin, Andrea PaulaCHILDRENCOMPUTERIZED GAMESEDUCATIONAL GAMESEDUCATIONAL NEUROSCIENCEINDIVIDUAL DIFFERENCESMACHINE LEARNINGPERSONALIZED TRAININGhttps://purl.org/becyt/ford/1.7https://purl.org/becyt/ford/1Executive functions are a class of cognitive processes critical for purposeful goal-directed behavior. Cognitive training is the adequate stimulation of executive functions and has been extensively studied and applied for more than 20 years. However, there is still a lack of solid consensus in the scientific community about its potential to elicit consistent improvements in untrained domains. Individual differences are considered one of the most important factors of inconsistent reports on cognitive training benefits, as differences in cognitive functioning are both genetic and context-dependent, and might be affected by age and socioeconomic status. We here present a proof of concept based on the hypothesis that baseline individual differences among subjects would provide valuable information to predict the individual effectiveness of a cognitive training intervention. With a dataset from an investigation in which 73 6-year-olds trained their executive functions using an online software with a fixed protocol, freely available at www.matemarote.org.ar, we trained a support vector classifier that successfully predicted (average accuracy = 0.67, AUC = 0.707) whether a child would improve, or not, after the cognitive stimulation, using baseline individual differences as features. We also performed a permutation feature importance analysis that suggested that all features contribute equally to the model's performance. In the long term, this results might allow us to design better training strategies for those players who are less likely to benefit from the current training protocols in order to maximize the stimulation for each child.Fil: Vladisauskas, Melina. Universidad Torcuato Di Tella; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Belloli, Laouen Mayal Louan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Fernandez Slezak, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Goldin, Andrea Paula. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella; ArgentinaFrontiers Media2022-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/161030Vladisauskas, Melina; Belloli, Laouen Mayal Louan; Fernandez Slezak, Diego; Goldin, Andrea Paula; A Machine Learning Approach to Personalize Computerized Cognitive Training Interventions; Frontiers Media; Frontiers in Artificial Intelligence; 5; 3-2022; 1-72624-8212CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/frai.2022.788605/fullinfo:eu-repo/semantics/altIdentifier/doi/10.3389/frai.2022.788605info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:29:36Zoai:ri.conicet.gov.ar:11336/161030instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:29:37.002CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A Machine Learning Approach to Personalize Computerized Cognitive Training Interventions
title A Machine Learning Approach to Personalize Computerized Cognitive Training Interventions
spellingShingle A Machine Learning Approach to Personalize Computerized Cognitive Training Interventions
Vladisauskas, Melina
CHILDREN
COMPUTERIZED GAMES
EDUCATIONAL GAMES
EDUCATIONAL NEUROSCIENCE
INDIVIDUAL DIFFERENCES
MACHINE LEARNING
PERSONALIZED TRAINING
title_short A Machine Learning Approach to Personalize Computerized Cognitive Training Interventions
title_full A Machine Learning Approach to Personalize Computerized Cognitive Training Interventions
title_fullStr A Machine Learning Approach to Personalize Computerized Cognitive Training Interventions
title_full_unstemmed A Machine Learning Approach to Personalize Computerized Cognitive Training Interventions
title_sort A Machine Learning Approach to Personalize Computerized Cognitive Training Interventions
dc.creator.none.fl_str_mv Vladisauskas, Melina
Belloli, Laouen Mayal Louan
Fernandez Slezak, Diego
Goldin, Andrea Paula
author Vladisauskas, Melina
author_facet Vladisauskas, Melina
Belloli, Laouen Mayal Louan
Fernandez Slezak, Diego
Goldin, Andrea Paula
author_role author
author2 Belloli, Laouen Mayal Louan
Fernandez Slezak, Diego
Goldin, Andrea Paula
author2_role author
author
author
dc.subject.none.fl_str_mv CHILDREN
COMPUTERIZED GAMES
EDUCATIONAL GAMES
EDUCATIONAL NEUROSCIENCE
INDIVIDUAL DIFFERENCES
MACHINE LEARNING
PERSONALIZED TRAINING
topic CHILDREN
COMPUTERIZED GAMES
EDUCATIONAL GAMES
EDUCATIONAL NEUROSCIENCE
INDIVIDUAL DIFFERENCES
MACHINE LEARNING
PERSONALIZED TRAINING
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.7
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Executive functions are a class of cognitive processes critical for purposeful goal-directed behavior. Cognitive training is the adequate stimulation of executive functions and has been extensively studied and applied for more than 20 years. However, there is still a lack of solid consensus in the scientific community about its potential to elicit consistent improvements in untrained domains. Individual differences are considered one of the most important factors of inconsistent reports on cognitive training benefits, as differences in cognitive functioning are both genetic and context-dependent, and might be affected by age and socioeconomic status. We here present a proof of concept based on the hypothesis that baseline individual differences among subjects would provide valuable information to predict the individual effectiveness of a cognitive training intervention. With a dataset from an investigation in which 73 6-year-olds trained their executive functions using an online software with a fixed protocol, freely available at www.matemarote.org.ar, we trained a support vector classifier that successfully predicted (average accuracy = 0.67, AUC = 0.707) whether a child would improve, or not, after the cognitive stimulation, using baseline individual differences as features. We also performed a permutation feature importance analysis that suggested that all features contribute equally to the model's performance. In the long term, this results might allow us to design better training strategies for those players who are less likely to benefit from the current training protocols in order to maximize the stimulation for each child.
Fil: Vladisauskas, Melina. Universidad Torcuato Di Tella; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Belloli, Laouen Mayal Louan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Fernandez Slezak, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Goldin, Andrea Paula. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella; Argentina
description Executive functions are a class of cognitive processes critical for purposeful goal-directed behavior. Cognitive training is the adequate stimulation of executive functions and has been extensively studied and applied for more than 20 years. However, there is still a lack of solid consensus in the scientific community about its potential to elicit consistent improvements in untrained domains. Individual differences are considered one of the most important factors of inconsistent reports on cognitive training benefits, as differences in cognitive functioning are both genetic and context-dependent, and might be affected by age and socioeconomic status. We here present a proof of concept based on the hypothesis that baseline individual differences among subjects would provide valuable information to predict the individual effectiveness of a cognitive training intervention. With a dataset from an investigation in which 73 6-year-olds trained their executive functions using an online software with a fixed protocol, freely available at www.matemarote.org.ar, we trained a support vector classifier that successfully predicted (average accuracy = 0.67, AUC = 0.707) whether a child would improve, or not, after the cognitive stimulation, using baseline individual differences as features. We also performed a permutation feature importance analysis that suggested that all features contribute equally to the model's performance. In the long term, this results might allow us to design better training strategies for those players who are less likely to benefit from the current training protocols in order to maximize the stimulation for each child.
publishDate 2022
dc.date.none.fl_str_mv 2022-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/161030
Vladisauskas, Melina; Belloli, Laouen Mayal Louan; Fernandez Slezak, Diego; Goldin, Andrea Paula; A Machine Learning Approach to Personalize Computerized Cognitive Training Interventions; Frontiers Media; Frontiers in Artificial Intelligence; 5; 3-2022; 1-7
2624-8212
CONICET Digital
CONICET
url http://hdl.handle.net/11336/161030
identifier_str_mv Vladisauskas, Melina; Belloli, Laouen Mayal Louan; Fernandez Slezak, Diego; Goldin, Andrea Paula; A Machine Learning Approach to Personalize Computerized Cognitive Training Interventions; Frontiers Media; Frontiers in Artificial Intelligence; 5; 3-2022; 1-7
2624-8212
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/frai.2022.788605/full
info:eu-repo/semantics/altIdentifier/doi/10.3389/frai.2022.788605
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Frontiers Media
publisher.none.fl_str_mv Frontiers Media
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614302808408064
score 13.070432