Multistationarity in structured reaction networks
- Autores
- Dickenstein, Alicia Marcela; Pérez Millán, Mercedes Soledad; Shiu, Anne; Tang, Xiaoxian
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Many dynamical systems arising in biology and other areas exhibit multistationarity (two or more positive steady states with the same conserved quantities). Although deciding multistationarity for a polynomial dynamical system is an effective question in real algebraic geometry, it is in general difficult to determine whether a given network can give rise to a multistationary system, and if so, to identify witnesses to multistationarity, that is, specific parameter values for which the system exhibits multiple steady states. Here we investigate both problems. First, we build on work of Conradi, Feliu, Mincheva, and Wiuf, who showed that for certain reaction networks whose steady states admit a positive parametrization, multistationarity is characterized by whether a certain “critical function” changes sign. Here, we allow for more general parametrizations, which make it much easier to determine the existence of a sign change. This is particularly simple when the steady-state equations are linearly equivalent to binomials; we give necessary conditions for this to happen, which hold for many networks studied in the literature. We also give a sufficient condition for multistationarity of networks whose steady-state equations can be replaced by equivalent triangular-form equations. Finally, we present methods for finding witnesses to multistationarity, which we show work well for certain structured reaction networks, including those common to biological signaling pathways. Our work relies on results from degree theory, on the existence of explicit rational parametrizations of the steady states, and on the specialization of Gröbner bases.
Fil: Dickenstein, Alicia Marcela. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Pérez Millán, Mercedes Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires; Argentina
Fil: Shiu, Anne. Texas A&M University; Estados Unidos
Fil: Tang, Xiaoxian. Texas A&M University; Estados Unidos - Materia
-
REACTION NETWORK
MASS-ACTION KINETICS
MULTISTATIONARITY
PARAMETRIZATION
BINOMIAL IDEAL
BROUWER DEGREE
GRÖBNER BASIS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/135881
Ver los metadatos del registro completo
id |
CONICETDig_adeb7a994fa6c600d30e618159af7629 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/135881 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Multistationarity in structured reaction networksDickenstein, Alicia MarcelaPérez Millán, Mercedes SoledadShiu, AnneTang, XiaoxianREACTION NETWORKMASS-ACTION KINETICSMULTISTATIONARITYPARAMETRIZATIONBINOMIAL IDEALBROUWER DEGREEGRÖBNER BASIShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Many dynamical systems arising in biology and other areas exhibit multistationarity (two or more positive steady states with the same conserved quantities). Although deciding multistationarity for a polynomial dynamical system is an effective question in real algebraic geometry, it is in general difficult to determine whether a given network can give rise to a multistationary system, and if so, to identify witnesses to multistationarity, that is, specific parameter values for which the system exhibits multiple steady states. Here we investigate both problems. First, we build on work of Conradi, Feliu, Mincheva, and Wiuf, who showed that for certain reaction networks whose steady states admit a positive parametrization, multistationarity is characterized by whether a certain “critical function” changes sign. Here, we allow for more general parametrizations, which make it much easier to determine the existence of a sign change. This is particularly simple when the steady-state equations are linearly equivalent to binomials; we give necessary conditions for this to happen, which hold for many networks studied in the literature. We also give a sufficient condition for multistationarity of networks whose steady-state equations can be replaced by equivalent triangular-form equations. Finally, we present methods for finding witnesses to multistationarity, which we show work well for certain structured reaction networks, including those common to biological signaling pathways. Our work relies on results from degree theory, on the existence of explicit rational parametrizations of the steady states, and on the specialization of Gröbner bases.Fil: Dickenstein, Alicia Marcela. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Pérez Millán, Mercedes Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires; ArgentinaFil: Shiu, Anne. Texas A&M University; Estados UnidosFil: Tang, Xiaoxian. Texas A&M University; Estados UnidosSpringer2019-02-20info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/135881Dickenstein, Alicia Marcela; Pérez Millán, Mercedes Soledad; Shiu, Anne; Tang, Xiaoxian; Multistationarity in structured reaction networks; Springer; Bulletin Of Mathematical Biology; 81; 5; 20-2-2019; 1527-15810092-8240CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs11538-019-00572-6info:eu-repo/semantics/altIdentifier/doi/10.1007/s11538-019-00572-6info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1810.05574info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:40:26Zoai:ri.conicet.gov.ar:11336/135881instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:40:26.396CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Multistationarity in structured reaction networks |
title |
Multistationarity in structured reaction networks |
spellingShingle |
Multistationarity in structured reaction networks Dickenstein, Alicia Marcela REACTION NETWORK MASS-ACTION KINETICS MULTISTATIONARITY PARAMETRIZATION BINOMIAL IDEAL BROUWER DEGREE GRÖBNER BASIS |
title_short |
Multistationarity in structured reaction networks |
title_full |
Multistationarity in structured reaction networks |
title_fullStr |
Multistationarity in structured reaction networks |
title_full_unstemmed |
Multistationarity in structured reaction networks |
title_sort |
Multistationarity in structured reaction networks |
dc.creator.none.fl_str_mv |
Dickenstein, Alicia Marcela Pérez Millán, Mercedes Soledad Shiu, Anne Tang, Xiaoxian |
author |
Dickenstein, Alicia Marcela |
author_facet |
Dickenstein, Alicia Marcela Pérez Millán, Mercedes Soledad Shiu, Anne Tang, Xiaoxian |
author_role |
author |
author2 |
Pérez Millán, Mercedes Soledad Shiu, Anne Tang, Xiaoxian |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
REACTION NETWORK MASS-ACTION KINETICS MULTISTATIONARITY PARAMETRIZATION BINOMIAL IDEAL BROUWER DEGREE GRÖBNER BASIS |
topic |
REACTION NETWORK MASS-ACTION KINETICS MULTISTATIONARITY PARAMETRIZATION BINOMIAL IDEAL BROUWER DEGREE GRÖBNER BASIS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Many dynamical systems arising in biology and other areas exhibit multistationarity (two or more positive steady states with the same conserved quantities). Although deciding multistationarity for a polynomial dynamical system is an effective question in real algebraic geometry, it is in general difficult to determine whether a given network can give rise to a multistationary system, and if so, to identify witnesses to multistationarity, that is, specific parameter values for which the system exhibits multiple steady states. Here we investigate both problems. First, we build on work of Conradi, Feliu, Mincheva, and Wiuf, who showed that for certain reaction networks whose steady states admit a positive parametrization, multistationarity is characterized by whether a certain “critical function” changes sign. Here, we allow for more general parametrizations, which make it much easier to determine the existence of a sign change. This is particularly simple when the steady-state equations are linearly equivalent to binomials; we give necessary conditions for this to happen, which hold for many networks studied in the literature. We also give a sufficient condition for multistationarity of networks whose steady-state equations can be replaced by equivalent triangular-form equations. Finally, we present methods for finding witnesses to multistationarity, which we show work well for certain structured reaction networks, including those common to biological signaling pathways. Our work relies on results from degree theory, on the existence of explicit rational parametrizations of the steady states, and on the specialization of Gröbner bases. Fil: Dickenstein, Alicia Marcela. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Pérez Millán, Mercedes Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires; Argentina Fil: Shiu, Anne. Texas A&M University; Estados Unidos Fil: Tang, Xiaoxian. Texas A&M University; Estados Unidos |
description |
Many dynamical systems arising in biology and other areas exhibit multistationarity (two or more positive steady states with the same conserved quantities). Although deciding multistationarity for a polynomial dynamical system is an effective question in real algebraic geometry, it is in general difficult to determine whether a given network can give rise to a multistationary system, and if so, to identify witnesses to multistationarity, that is, specific parameter values for which the system exhibits multiple steady states. Here we investigate both problems. First, we build on work of Conradi, Feliu, Mincheva, and Wiuf, who showed that for certain reaction networks whose steady states admit a positive parametrization, multistationarity is characterized by whether a certain “critical function” changes sign. Here, we allow for more general parametrizations, which make it much easier to determine the existence of a sign change. This is particularly simple when the steady-state equations are linearly equivalent to binomials; we give necessary conditions for this to happen, which hold for many networks studied in the literature. We also give a sufficient condition for multistationarity of networks whose steady-state equations can be replaced by equivalent triangular-form equations. Finally, we present methods for finding witnesses to multistationarity, which we show work well for certain structured reaction networks, including those common to biological signaling pathways. Our work relies on results from degree theory, on the existence of explicit rational parametrizations of the steady states, and on the specialization of Gröbner bases. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-02-20 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/135881 Dickenstein, Alicia Marcela; Pérez Millán, Mercedes Soledad; Shiu, Anne; Tang, Xiaoxian; Multistationarity in structured reaction networks; Springer; Bulletin Of Mathematical Biology; 81; 5; 20-2-2019; 1527-1581 0092-8240 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/135881 |
identifier_str_mv |
Dickenstein, Alicia Marcela; Pérez Millán, Mercedes Soledad; Shiu, Anne; Tang, Xiaoxian; Multistationarity in structured reaction networks; Springer; Bulletin Of Mathematical Biology; 81; 5; 20-2-2019; 1527-1581 0092-8240 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs11538-019-00572-6 info:eu-repo/semantics/altIdentifier/doi/10.1007/s11538-019-00572-6 info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1810.05574 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614432415547392 |
score |
13.070432 |