MAPK's networks and their capacity for multistationarity due to toric steady states

Autores
Pérez Millán, Mercedes Soledad; Turjanski, Adrian
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Mitogen-activated protein kinase (MAPK) signaling pathways play an essential role in the transduction of environmental stimuli to the nucleus, thereby regulating a variety of cellular processes, including cell proliferation, differentiation and programmed cell death. The components of the MAPK extracellular activated protein kinase (ERK) cascade represent attractive targets for cancer therapy as their aberrant activation is a frequent event among highly prevalent human cancers. MAPK networks are a model for computational simulation, mostly using ordinary and partial differential equations. Key results showed that these networks can have switch-like behavior, bistability and oscillations. In this work, we consider three representative ERK networks, one with a negative feedback loop, which present a binomial steady state ideal under mass-action kinetics. We therefore apply the theoretical result present in [27] to find a set of rate constants that allow two significantly different stable steady states in the same stoichiometric compatibility class for each network. Our approach makes it possible to study certain aspects of the system, such as multistationarity, without relying on simulation, since we do not assume a priori any constant but the topology of the network. As the performed analysis is general it could be applied to many other important biochemical networks.
Fil: Pérez Millán, Mercedes Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Universidad de Buenos Aires. Ciclo Básico Común; Argentina
Fil: Turjanski, Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina
Materia
MAPK
MASS-ACTION KINETICS
MULTISTATIONARITY
SIGNALING NETWORKS
TORIC STEADY STATES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/182511

id CONICETDig_4d10adbc4f99f28da44bda16d9917b8f
oai_identifier_str oai:ri.conicet.gov.ar:11336/182511
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling MAPK's networks and their capacity for multistationarity due to toric steady statesPérez Millán, Mercedes SoledadTurjanski, AdrianMAPKMASS-ACTION KINETICSMULTISTATIONARITYSIGNALING NETWORKSTORIC STEADY STATEShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Mitogen-activated protein kinase (MAPK) signaling pathways play an essential role in the transduction of environmental stimuli to the nucleus, thereby regulating a variety of cellular processes, including cell proliferation, differentiation and programmed cell death. The components of the MAPK extracellular activated protein kinase (ERK) cascade represent attractive targets for cancer therapy as their aberrant activation is a frequent event among highly prevalent human cancers. MAPK networks are a model for computational simulation, mostly using ordinary and partial differential equations. Key results showed that these networks can have switch-like behavior, bistability and oscillations. In this work, we consider three representative ERK networks, one with a negative feedback loop, which present a binomial steady state ideal under mass-action kinetics. We therefore apply the theoretical result present in [27] to find a set of rate constants that allow two significantly different stable steady states in the same stoichiometric compatibility class for each network. Our approach makes it possible to study certain aspects of the system, such as multistationarity, without relying on simulation, since we do not assume a priori any constant but the topology of the network. As the performed analysis is general it could be applied to many other important biochemical networks.Fil: Pérez Millán, Mercedes Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Universidad de Buenos Aires. Ciclo Básico Común; ArgentinaFil: Turjanski, Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaElsevier Science Inc.2015-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/182511Pérez Millán, Mercedes Soledad; Turjanski, Adrian; MAPK's networks and their capacity for multistationarity due to toric steady states; Elsevier Science Inc.; Mathematical Biosciences; 262; 4-2015; 125-1370025-5564CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0025556415000152info:eu-repo/semantics/altIdentifier/doi/10.1016/j.mbs.2014.12.010info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:51:25Zoai:ri.conicet.gov.ar:11336/182511instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:51:25.41CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv MAPK's networks and their capacity for multistationarity due to toric steady states
title MAPK's networks and their capacity for multistationarity due to toric steady states
spellingShingle MAPK's networks and their capacity for multistationarity due to toric steady states
Pérez Millán, Mercedes Soledad
MAPK
MASS-ACTION KINETICS
MULTISTATIONARITY
SIGNALING NETWORKS
TORIC STEADY STATES
title_short MAPK's networks and their capacity for multistationarity due to toric steady states
title_full MAPK's networks and their capacity for multistationarity due to toric steady states
title_fullStr MAPK's networks and their capacity for multistationarity due to toric steady states
title_full_unstemmed MAPK's networks and their capacity for multistationarity due to toric steady states
title_sort MAPK's networks and their capacity for multistationarity due to toric steady states
dc.creator.none.fl_str_mv Pérez Millán, Mercedes Soledad
Turjanski, Adrian
author Pérez Millán, Mercedes Soledad
author_facet Pérez Millán, Mercedes Soledad
Turjanski, Adrian
author_role author
author2 Turjanski, Adrian
author2_role author
dc.subject.none.fl_str_mv MAPK
MASS-ACTION KINETICS
MULTISTATIONARITY
SIGNALING NETWORKS
TORIC STEADY STATES
topic MAPK
MASS-ACTION KINETICS
MULTISTATIONARITY
SIGNALING NETWORKS
TORIC STEADY STATES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Mitogen-activated protein kinase (MAPK) signaling pathways play an essential role in the transduction of environmental stimuli to the nucleus, thereby regulating a variety of cellular processes, including cell proliferation, differentiation and programmed cell death. The components of the MAPK extracellular activated protein kinase (ERK) cascade represent attractive targets for cancer therapy as their aberrant activation is a frequent event among highly prevalent human cancers. MAPK networks are a model for computational simulation, mostly using ordinary and partial differential equations. Key results showed that these networks can have switch-like behavior, bistability and oscillations. In this work, we consider three representative ERK networks, one with a negative feedback loop, which present a binomial steady state ideal under mass-action kinetics. We therefore apply the theoretical result present in [27] to find a set of rate constants that allow two significantly different stable steady states in the same stoichiometric compatibility class for each network. Our approach makes it possible to study certain aspects of the system, such as multistationarity, without relying on simulation, since we do not assume a priori any constant but the topology of the network. As the performed analysis is general it could be applied to many other important biochemical networks.
Fil: Pérez Millán, Mercedes Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Universidad de Buenos Aires. Ciclo Básico Común; Argentina
Fil: Turjanski, Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina
description Mitogen-activated protein kinase (MAPK) signaling pathways play an essential role in the transduction of environmental stimuli to the nucleus, thereby regulating a variety of cellular processes, including cell proliferation, differentiation and programmed cell death. The components of the MAPK extracellular activated protein kinase (ERK) cascade represent attractive targets for cancer therapy as their aberrant activation is a frequent event among highly prevalent human cancers. MAPK networks are a model for computational simulation, mostly using ordinary and partial differential equations. Key results showed that these networks can have switch-like behavior, bistability and oscillations. In this work, we consider three representative ERK networks, one with a negative feedback loop, which present a binomial steady state ideal under mass-action kinetics. We therefore apply the theoretical result present in [27] to find a set of rate constants that allow two significantly different stable steady states in the same stoichiometric compatibility class for each network. Our approach makes it possible to study certain aspects of the system, such as multistationarity, without relying on simulation, since we do not assume a priori any constant but the topology of the network. As the performed analysis is general it could be applied to many other important biochemical networks.
publishDate 2015
dc.date.none.fl_str_mv 2015-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/182511
Pérez Millán, Mercedes Soledad; Turjanski, Adrian; MAPK's networks and their capacity for multistationarity due to toric steady states; Elsevier Science Inc.; Mathematical Biosciences; 262; 4-2015; 125-137
0025-5564
CONICET Digital
CONICET
url http://hdl.handle.net/11336/182511
identifier_str_mv Pérez Millán, Mercedes Soledad; Turjanski, Adrian; MAPK's networks and their capacity for multistationarity due to toric steady states; Elsevier Science Inc.; Mathematical Biosciences; 262; 4-2015; 125-137
0025-5564
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0025556415000152
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.mbs.2014.12.010
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science Inc.
publisher.none.fl_str_mv Elsevier Science Inc.
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613580534579200
score 13.070432