Adaptive MCA-Matched Filter Algorithms for Binary Detection
- Autores
- Messina, Francisco; Cernuschi-Frías, Bruno
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- In this work, we present a method for signal-to-noise ratio maximization using a linear filter based on minor component analysis of the noise covariance matrix. As we will see, the greatest benefits are obtained when both filter and signal design are treated as a single problem. This general problem is then related to the minimization of the probability of error of a digital communication. In particular, the classical binary detection problem is considered when nonstationary and (possibly) nonwhite additive Gaussian noise is present. Two algorithms are given to solve the problem at hand with cuadratic and linear computational complexity with respect to the dimension of the problem.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
Minor Component Analysis
Matched Filter
Optimal Signal Design
Binary Detection
Adaptive Algorithms - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/93429
Ver los metadatos del registro completo
id |
SEDICI_e4ab22776f26c54eceaf75c2a5596206 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/93429 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Adaptive MCA-Matched Filter Algorithms for Binary DetectionMessina, FranciscoCernuschi-Frías, BrunoCiencias InformáticasMinor Component AnalysisMatched FilterOptimal Signal DesignBinary DetectionAdaptive AlgorithmsIn this work, we present a method for signal-to-noise ratio maximization using a linear filter based on minor component analysis of the noise covariance matrix. As we will see, the greatest benefits are obtained when both filter and signal design are treated as a single problem. This general problem is then related to the minimization of the probability of error of a digital communication. In particular, the classical binary detection problem is considered when nonstationary and (possibly) nonwhite additive Gaussian noise is present. Two algorithms are given to solve the problem at hand with cuadratic and linear computational complexity with respect to the dimension of the problem.Sociedad Argentina de Informática e Investigación Operativa2013-09info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf163-174http://sedici.unlp.edu.ar/handle/10915/93429enginfo:eu-repo/semantics/altIdentifier/issn/1850-2806info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:19:22Zoai:sedici.unlp.edu.ar:10915/93429Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:19:23.153SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Adaptive MCA-Matched Filter Algorithms for Binary Detection |
title |
Adaptive MCA-Matched Filter Algorithms for Binary Detection |
spellingShingle |
Adaptive MCA-Matched Filter Algorithms for Binary Detection Messina, Francisco Ciencias Informáticas Minor Component Analysis Matched Filter Optimal Signal Design Binary Detection Adaptive Algorithms |
title_short |
Adaptive MCA-Matched Filter Algorithms for Binary Detection |
title_full |
Adaptive MCA-Matched Filter Algorithms for Binary Detection |
title_fullStr |
Adaptive MCA-Matched Filter Algorithms for Binary Detection |
title_full_unstemmed |
Adaptive MCA-Matched Filter Algorithms for Binary Detection |
title_sort |
Adaptive MCA-Matched Filter Algorithms for Binary Detection |
dc.creator.none.fl_str_mv |
Messina, Francisco Cernuschi-Frías, Bruno |
author |
Messina, Francisco |
author_facet |
Messina, Francisco Cernuschi-Frías, Bruno |
author_role |
author |
author2 |
Cernuschi-Frías, Bruno |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Minor Component Analysis Matched Filter Optimal Signal Design Binary Detection Adaptive Algorithms |
topic |
Ciencias Informáticas Minor Component Analysis Matched Filter Optimal Signal Design Binary Detection Adaptive Algorithms |
dc.description.none.fl_txt_mv |
In this work, we present a method for signal-to-noise ratio maximization using a linear filter based on minor component analysis of the noise covariance matrix. As we will see, the greatest benefits are obtained when both filter and signal design are treated as a single problem. This general problem is then related to the minimization of the probability of error of a digital communication. In particular, the classical binary detection problem is considered when nonstationary and (possibly) nonwhite additive Gaussian noise is present. Two algorithms are given to solve the problem at hand with cuadratic and linear computational complexity with respect to the dimension of the problem. Sociedad Argentina de Informática e Investigación Operativa |
description |
In this work, we present a method for signal-to-noise ratio maximization using a linear filter based on minor component analysis of the noise covariance matrix. As we will see, the greatest benefits are obtained when both filter and signal design are treated as a single problem. This general problem is then related to the minimization of the probability of error of a digital communication. In particular, the classical binary detection problem is considered when nonstationary and (possibly) nonwhite additive Gaussian noise is present. Two algorithms are given to solve the problem at hand with cuadratic and linear computational complexity with respect to the dimension of the problem. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/93429 |
url |
http://sedici.unlp.edu.ar/handle/10915/93429 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1850-2806 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 163-174 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616067767336960 |
score |
13.070432 |