Error Estimates for Doubly-Generalized Tikhonov-Phillips Regularization
- Autores
- Carrió, María Josefina; Mazzieri, Gisela Luciana; Temperini, Karina Guadalupe
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work, error estimates are presented for the case in which the regularized solution isobtained by minimizing doubly-generalized Tikhonov-Phillips functionals. The first result is based mainly on an assumption given by a source condition. It is proved that it is possible to replace this assumption by a variational inequality, obtaining analogous result of the error estimate. Finally, relationships are established between the optimality condition associated with the problem, the source condition and the variational inequality. On the other hand, it is known that, in certain cases, the use of two or more penalizing terms is useful. For this reason, generalizations of the results of error estimates are presented for cases in which the regularized solution is a minimizer of doubly-generalized Tikhonov-Phillips functionals with multiple penalizers.
Fil: Carrió, María Josefina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina. Universidad Nacional del Litoral. Facultad de Bioquimica y Ciencias Biologicas. Departamento de Matematicas; Argentina
Fil: Mazzieri, Gisela Luciana. Universidad Nacional del Litoral. Facultad de Bioquimica y Ciencias Biologicas. Departamento de Matematicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Temperini, Karina Guadalupe. Universidad Nacional del Litoral. Facultad de Humanidades y Ciencias. Departamento de Matemáticas; Argentina; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina - Materia
-
INVERSE PROBLEMS
TIKHONOV-PHILLIPS
ERROR ESTIMATE
SOURCE CONDITION
VARIATIONAL INEQUALITY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/249373
Ver los metadatos del registro completo
id |
CONICETDig_09bf83a222aeb3761ca4e65140784666 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/249373 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Error Estimates for Doubly-Generalized Tikhonov-Phillips RegularizationCarrió, María JosefinaMazzieri, Gisela LucianaTemperini, Karina GuadalupeINVERSE PROBLEMSTIKHONOV-PHILLIPSERROR ESTIMATESOURCE CONDITIONVARIATIONAL INEQUALITYhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this work, error estimates are presented for the case in which the regularized solution isobtained by minimizing doubly-generalized Tikhonov-Phillips functionals. The first result is based mainly on an assumption given by a source condition. It is proved that it is possible to replace this assumption by a variational inequality, obtaining analogous result of the error estimate. Finally, relationships are established between the optimality condition associated with the problem, the source condition and the variational inequality. On the other hand, it is known that, in certain cases, the use of two or more penalizing terms is useful. For this reason, generalizations of the results of error estimates are presented for cases in which the regularized solution is a minimizer of doubly-generalized Tikhonov-Phillips functionals with multiple penalizers.Fil: Carrió, María Josefina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina. Universidad Nacional del Litoral. Facultad de Bioquimica y Ciencias Biologicas. Departamento de Matematicas; ArgentinaFil: Mazzieri, Gisela Luciana. Universidad Nacional del Litoral. Facultad de Bioquimica y Ciencias Biologicas. Departamento de Matematicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Temperini, Karina Guadalupe. Universidad Nacional del Litoral. Facultad de Humanidades y Ciencias. Departamento de Matemáticas; Argentina; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaSociedade Brasileira de Matemática Aplicada e Computacional2023-03-14info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/249373Carrió, María Josefina; Mazzieri, Gisela Luciana; Temperini, Karina Guadalupe; Error Estimates for Doubly-Generalized Tikhonov-Phillips Regularization; Sociedade Brasileira de Matemática Aplicada e Computacional; Trends in Computational and Applied Mathematics; 24; 1; 14-3-2023; 45-612676-0029CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://tema.sbmac.org.br/tema/article/view/1613info:eu-repo/semantics/altIdentifier/doi/10.5540/tcam.2022.024.01.00045info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:09:38Zoai:ri.conicet.gov.ar:11336/249373instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:09:38.344CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Error Estimates for Doubly-Generalized Tikhonov-Phillips Regularization |
title |
Error Estimates for Doubly-Generalized Tikhonov-Phillips Regularization |
spellingShingle |
Error Estimates for Doubly-Generalized Tikhonov-Phillips Regularization Carrió, María Josefina INVERSE PROBLEMS TIKHONOV-PHILLIPS ERROR ESTIMATE SOURCE CONDITION VARIATIONAL INEQUALITY |
title_short |
Error Estimates for Doubly-Generalized Tikhonov-Phillips Regularization |
title_full |
Error Estimates for Doubly-Generalized Tikhonov-Phillips Regularization |
title_fullStr |
Error Estimates for Doubly-Generalized Tikhonov-Phillips Regularization |
title_full_unstemmed |
Error Estimates for Doubly-Generalized Tikhonov-Phillips Regularization |
title_sort |
Error Estimates for Doubly-Generalized Tikhonov-Phillips Regularization |
dc.creator.none.fl_str_mv |
Carrió, María Josefina Mazzieri, Gisela Luciana Temperini, Karina Guadalupe |
author |
Carrió, María Josefina |
author_facet |
Carrió, María Josefina Mazzieri, Gisela Luciana Temperini, Karina Guadalupe |
author_role |
author |
author2 |
Mazzieri, Gisela Luciana Temperini, Karina Guadalupe |
author2_role |
author author |
dc.subject.none.fl_str_mv |
INVERSE PROBLEMS TIKHONOV-PHILLIPS ERROR ESTIMATE SOURCE CONDITION VARIATIONAL INEQUALITY |
topic |
INVERSE PROBLEMS TIKHONOV-PHILLIPS ERROR ESTIMATE SOURCE CONDITION VARIATIONAL INEQUALITY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this work, error estimates are presented for the case in which the regularized solution isobtained by minimizing doubly-generalized Tikhonov-Phillips functionals. The first result is based mainly on an assumption given by a source condition. It is proved that it is possible to replace this assumption by a variational inequality, obtaining analogous result of the error estimate. Finally, relationships are established between the optimality condition associated with the problem, the source condition and the variational inequality. On the other hand, it is known that, in certain cases, the use of two or more penalizing terms is useful. For this reason, generalizations of the results of error estimates are presented for cases in which the regularized solution is a minimizer of doubly-generalized Tikhonov-Phillips functionals with multiple penalizers. Fil: Carrió, María Josefina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina. Universidad Nacional del Litoral. Facultad de Bioquimica y Ciencias Biologicas. Departamento de Matematicas; Argentina Fil: Mazzieri, Gisela Luciana. Universidad Nacional del Litoral. Facultad de Bioquimica y Ciencias Biologicas. Departamento de Matematicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Temperini, Karina Guadalupe. Universidad Nacional del Litoral. Facultad de Humanidades y Ciencias. Departamento de Matemáticas; Argentina; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina |
description |
In this work, error estimates are presented for the case in which the regularized solution isobtained by minimizing doubly-generalized Tikhonov-Phillips functionals. The first result is based mainly on an assumption given by a source condition. It is proved that it is possible to replace this assumption by a variational inequality, obtaining analogous result of the error estimate. Finally, relationships are established between the optimality condition associated with the problem, the source condition and the variational inequality. On the other hand, it is known that, in certain cases, the use of two or more penalizing terms is useful. For this reason, generalizations of the results of error estimates are presented for cases in which the regularized solution is a minimizer of doubly-generalized Tikhonov-Phillips functionals with multiple penalizers. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-03-14 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/249373 Carrió, María Josefina; Mazzieri, Gisela Luciana; Temperini, Karina Guadalupe; Error Estimates for Doubly-Generalized Tikhonov-Phillips Regularization; Sociedade Brasileira de Matemática Aplicada e Computacional; Trends in Computational and Applied Mathematics; 24; 1; 14-3-2023; 45-61 2676-0029 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/249373 |
identifier_str_mv |
Carrió, María Josefina; Mazzieri, Gisela Luciana; Temperini, Karina Guadalupe; Error Estimates for Doubly-Generalized Tikhonov-Phillips Regularization; Sociedade Brasileira de Matemática Aplicada e Computacional; Trends in Computational and Applied Mathematics; 24; 1; 14-3-2023; 45-61 2676-0029 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://tema.sbmac.org.br/tema/article/view/1613 info:eu-repo/semantics/altIdentifier/doi/10.5540/tcam.2022.024.01.00045 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1843606424892997632 |
score |
13.000565 |