The clique operator on circular-arc graphs
- Autores
- Lin, Min Chih; Soulignac, Francisco Juan; Szwarcfiter, Jayme L.
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A circular-arc graphG is the intersection graph of a collection of arcs on the circle and such a collection is called a model of G. Say that the model is proper when no arc of the collection contains another one, it is Helly when the arcs satisfy the Helly Property, while the model is proper Helly when it is simultaneously proper and Helly. A graph admitting a Helly (resp. proper Helly) model is called a Helly (resp. proper Helly) circular-arc graph. The clique graphK (G) of a graph G is the intersection graph of its cliques. The iterated clique graphKi (G) of G is defined by K0 (G) = G and Ki + 1 (G) = K (Ki (G)). In this paper, we consider two problems on clique graphs of circular-arc graphs. The first is to characterize clique graphs of Helly circular-arc graphs and proper Helly circular-arc graphs. The second is to characterize the graph to which a general circular-arc graph K-converges, if it is K-convergent. We propose complete solutions to both problems, extending the partial results known so far. The methods lead to linear time recognition algorithms, for both problems.
Fil: Lin, Min Chih. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Fil: Soulignac, Francisco Juan. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Szwarcfiter, Jayme L.. Universidade Federal do Rio de Janeiro; Brasil - Materia
-
ALGORITHMS
CLIQUE GRAPHS
HELLY CIRCULAR-ARC GRAPHS
K-BEHAVIOR
PROPER HELLY CIRCULAR-ARC GRAPHS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/98696
Ver los metadatos del registro completo
id |
CONICETDig_ad195d19a3e441040832f8635a04b200 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/98696 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The clique operator on circular-arc graphsLin, Min ChihSoulignac, Francisco JuanSzwarcfiter, Jayme L.ALGORITHMSCLIQUE GRAPHSHELLY CIRCULAR-ARC GRAPHSK-BEHAVIORPROPER HELLY CIRCULAR-ARC GRAPHShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A circular-arc graphG is the intersection graph of a collection of arcs on the circle and such a collection is called a model of G. Say that the model is proper when no arc of the collection contains another one, it is Helly when the arcs satisfy the Helly Property, while the model is proper Helly when it is simultaneously proper and Helly. A graph admitting a Helly (resp. proper Helly) model is called a Helly (resp. proper Helly) circular-arc graph. The clique graphK (G) of a graph G is the intersection graph of its cliques. The iterated clique graphKi (G) of G is defined by K0 (G) = G and Ki + 1 (G) = K (Ki (G)). In this paper, we consider two problems on clique graphs of circular-arc graphs. The first is to characterize clique graphs of Helly circular-arc graphs and proper Helly circular-arc graphs. The second is to characterize the graph to which a general circular-arc graph K-converges, if it is K-convergent. We propose complete solutions to both problems, extending the partial results known so far. The methods lead to linear time recognition algorithms, for both problems.Fil: Lin, Min Chih. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaFil: Soulignac, Francisco Juan. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Szwarcfiter, Jayme L.. Universidade Federal do Rio de Janeiro; BrasilElsevier Science2010-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/98696Lin, Min Chih; Soulignac, Francisco Juan; Szwarcfiter, Jayme L.; The clique operator on circular-arc graphs; Elsevier Science; Discrete Applied Mathematics; 158; 12; 6-2010; 1259-12670166-218XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2009.01.019info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0166218X09000195info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:56:09Zoai:ri.conicet.gov.ar:11336/98696instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:56:09.344CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The clique operator on circular-arc graphs |
title |
The clique operator on circular-arc graphs |
spellingShingle |
The clique operator on circular-arc graphs Lin, Min Chih ALGORITHMS CLIQUE GRAPHS HELLY CIRCULAR-ARC GRAPHS K-BEHAVIOR PROPER HELLY CIRCULAR-ARC GRAPHS |
title_short |
The clique operator on circular-arc graphs |
title_full |
The clique operator on circular-arc graphs |
title_fullStr |
The clique operator on circular-arc graphs |
title_full_unstemmed |
The clique operator on circular-arc graphs |
title_sort |
The clique operator on circular-arc graphs |
dc.creator.none.fl_str_mv |
Lin, Min Chih Soulignac, Francisco Juan Szwarcfiter, Jayme L. |
author |
Lin, Min Chih |
author_facet |
Lin, Min Chih Soulignac, Francisco Juan Szwarcfiter, Jayme L. |
author_role |
author |
author2 |
Soulignac, Francisco Juan Szwarcfiter, Jayme L. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
ALGORITHMS CLIQUE GRAPHS HELLY CIRCULAR-ARC GRAPHS K-BEHAVIOR PROPER HELLY CIRCULAR-ARC GRAPHS |
topic |
ALGORITHMS CLIQUE GRAPHS HELLY CIRCULAR-ARC GRAPHS K-BEHAVIOR PROPER HELLY CIRCULAR-ARC GRAPHS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A circular-arc graphG is the intersection graph of a collection of arcs on the circle and such a collection is called a model of G. Say that the model is proper when no arc of the collection contains another one, it is Helly when the arcs satisfy the Helly Property, while the model is proper Helly when it is simultaneously proper and Helly. A graph admitting a Helly (resp. proper Helly) model is called a Helly (resp. proper Helly) circular-arc graph. The clique graphK (G) of a graph G is the intersection graph of its cliques. The iterated clique graphKi (G) of G is defined by K0 (G) = G and Ki + 1 (G) = K (Ki (G)). In this paper, we consider two problems on clique graphs of circular-arc graphs. The first is to characterize clique graphs of Helly circular-arc graphs and proper Helly circular-arc graphs. The second is to characterize the graph to which a general circular-arc graph K-converges, if it is K-convergent. We propose complete solutions to both problems, extending the partial results known so far. The methods lead to linear time recognition algorithms, for both problems. Fil: Lin, Min Chih. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina Fil: Soulignac, Francisco Juan. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Szwarcfiter, Jayme L.. Universidade Federal do Rio de Janeiro; Brasil |
description |
A circular-arc graphG is the intersection graph of a collection of arcs on the circle and such a collection is called a model of G. Say that the model is proper when no arc of the collection contains another one, it is Helly when the arcs satisfy the Helly Property, while the model is proper Helly when it is simultaneously proper and Helly. A graph admitting a Helly (resp. proper Helly) model is called a Helly (resp. proper Helly) circular-arc graph. The clique graphK (G) of a graph G is the intersection graph of its cliques. The iterated clique graphKi (G) of G is defined by K0 (G) = G and Ki + 1 (G) = K (Ki (G)). In this paper, we consider two problems on clique graphs of circular-arc graphs. The first is to characterize clique graphs of Helly circular-arc graphs and proper Helly circular-arc graphs. The second is to characterize the graph to which a general circular-arc graph K-converges, if it is K-convergent. We propose complete solutions to both problems, extending the partial results known so far. The methods lead to linear time recognition algorithms, for both problems. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/98696 Lin, Min Chih; Soulignac, Francisco Juan; Szwarcfiter, Jayme L.; The clique operator on circular-arc graphs; Elsevier Science; Discrete Applied Mathematics; 158; 12; 6-2010; 1259-1267 0166-218X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/98696 |
identifier_str_mv |
Lin, Min Chih; Soulignac, Francisco Juan; Szwarcfiter, Jayme L.; The clique operator on circular-arc graphs; Elsevier Science; Discrete Applied Mathematics; 158; 12; 6-2010; 1259-1267 0166-218X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2009.01.019 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0166218X09000195 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269387413782528 |
score |
13.13397 |