Normal Helly circular-arc graphs and its subclasses

Autores
Lin, Min Chih; Soulignac, Francisco Juan; Szwarcfiter, Jayme L.
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A Helly circular-arc model M=(C,A) is a circle C together with a Helly family A of arcs of C. If no arc is contained in any other, then M is a proper Helly circular-arc model, if every arc has the same length, then M is a unit Helly circular-arc model, and if there are no two arcs covering the circle, then M is a normal Helly circular-arc model. A Helly (resp. proper Helly, unit Helly, normal Helly) circular-arc graph is the intersection graph of the arcs of a Helly (resp. proper Helly, unit Helly, normal Helly) circular-arc model. In this article we study these subclasses of Helly circular-arc graphs. We show natural generalizations of several properties of (proper) interval graphs that hold for some of these Helly circular-arc subclasses. Next, we describe characterizations for the subclasses of Helly circular-arc graphs, including forbidden induced subgraphs characterizations. These characterizations lead to efficient algorithms for recognizing graphs within these classes. Finally, we show how these classes of graphs relate with straight and round digraphs.
Fil: Lin, Min Chih. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Soulignac, Francisco Juan. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Szwarcfiter, Jayme L.. Universidade Federal do Rio de Janeiro; Brasil
Materia
HELLY CIRCULAR-ARC GRAPHS
NORMAL CIRCULAR-ARC GRAPHS
PROPER CIRCULAR-ARC GRAPHS
UNIT CIRCULAR-ARC GRAPHS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/84437

id CONICETDig_baa3207d74bb6b186845d23a3b72d4e1
oai_identifier_str oai:ri.conicet.gov.ar:11336/84437
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Normal Helly circular-arc graphs and its subclassesLin, Min ChihSoulignac, Francisco JuanSzwarcfiter, Jayme L.HELLY CIRCULAR-ARC GRAPHSNORMAL CIRCULAR-ARC GRAPHSPROPER CIRCULAR-ARC GRAPHSUNIT CIRCULAR-ARC GRAPHShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A Helly circular-arc model M=(C,A) is a circle C together with a Helly family A of arcs of C. If no arc is contained in any other, then M is a proper Helly circular-arc model, if every arc has the same length, then M is a unit Helly circular-arc model, and if there are no two arcs covering the circle, then M is a normal Helly circular-arc model. A Helly (resp. proper Helly, unit Helly, normal Helly) circular-arc graph is the intersection graph of the arcs of a Helly (resp. proper Helly, unit Helly, normal Helly) circular-arc model. In this article we study these subclasses of Helly circular-arc graphs. We show natural generalizations of several properties of (proper) interval graphs that hold for some of these Helly circular-arc subclasses. Next, we describe characterizations for the subclasses of Helly circular-arc graphs, including forbidden induced subgraphs characterizations. These characterizations lead to efficient algorithms for recognizing graphs within these classes. Finally, we show how these classes of graphs relate with straight and round digraphs.Fil: Lin, Min Chih. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Soulignac, Francisco Juan. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Szwarcfiter, Jayme L.. Universidade Federal do Rio de Janeiro; BrasilElsevier Science2013-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/84437Lin, Min Chih; Soulignac, Francisco Juan; Szwarcfiter, Jayme L.; Normal Helly circular-arc graphs and its subclasses; Elsevier Science; Discrete Applied Mathematics; 161; 7-8; 5-2013; 1037-10590166-218XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2012.11.005info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0166218X12004295info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:50:43Zoai:ri.conicet.gov.ar:11336/84437instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:50:43.489CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Normal Helly circular-arc graphs and its subclasses
title Normal Helly circular-arc graphs and its subclasses
spellingShingle Normal Helly circular-arc graphs and its subclasses
Lin, Min Chih
HELLY CIRCULAR-ARC GRAPHS
NORMAL CIRCULAR-ARC GRAPHS
PROPER CIRCULAR-ARC GRAPHS
UNIT CIRCULAR-ARC GRAPHS
title_short Normal Helly circular-arc graphs and its subclasses
title_full Normal Helly circular-arc graphs and its subclasses
title_fullStr Normal Helly circular-arc graphs and its subclasses
title_full_unstemmed Normal Helly circular-arc graphs and its subclasses
title_sort Normal Helly circular-arc graphs and its subclasses
dc.creator.none.fl_str_mv Lin, Min Chih
Soulignac, Francisco Juan
Szwarcfiter, Jayme L.
author Lin, Min Chih
author_facet Lin, Min Chih
Soulignac, Francisco Juan
Szwarcfiter, Jayme L.
author_role author
author2 Soulignac, Francisco Juan
Szwarcfiter, Jayme L.
author2_role author
author
dc.subject.none.fl_str_mv HELLY CIRCULAR-ARC GRAPHS
NORMAL CIRCULAR-ARC GRAPHS
PROPER CIRCULAR-ARC GRAPHS
UNIT CIRCULAR-ARC GRAPHS
topic HELLY CIRCULAR-ARC GRAPHS
NORMAL CIRCULAR-ARC GRAPHS
PROPER CIRCULAR-ARC GRAPHS
UNIT CIRCULAR-ARC GRAPHS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A Helly circular-arc model M=(C,A) is a circle C together with a Helly family A of arcs of C. If no arc is contained in any other, then M is a proper Helly circular-arc model, if every arc has the same length, then M is a unit Helly circular-arc model, and if there are no two arcs covering the circle, then M is a normal Helly circular-arc model. A Helly (resp. proper Helly, unit Helly, normal Helly) circular-arc graph is the intersection graph of the arcs of a Helly (resp. proper Helly, unit Helly, normal Helly) circular-arc model. In this article we study these subclasses of Helly circular-arc graphs. We show natural generalizations of several properties of (proper) interval graphs that hold for some of these Helly circular-arc subclasses. Next, we describe characterizations for the subclasses of Helly circular-arc graphs, including forbidden induced subgraphs characterizations. These characterizations lead to efficient algorithms for recognizing graphs within these classes. Finally, we show how these classes of graphs relate with straight and round digraphs.
Fil: Lin, Min Chih. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Soulignac, Francisco Juan. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Szwarcfiter, Jayme L.. Universidade Federal do Rio de Janeiro; Brasil
description A Helly circular-arc model M=(C,A) is a circle C together with a Helly family A of arcs of C. If no arc is contained in any other, then M is a proper Helly circular-arc model, if every arc has the same length, then M is a unit Helly circular-arc model, and if there are no two arcs covering the circle, then M is a normal Helly circular-arc model. A Helly (resp. proper Helly, unit Helly, normal Helly) circular-arc graph is the intersection graph of the arcs of a Helly (resp. proper Helly, unit Helly, normal Helly) circular-arc model. In this article we study these subclasses of Helly circular-arc graphs. We show natural generalizations of several properties of (proper) interval graphs that hold for some of these Helly circular-arc subclasses. Next, we describe characterizations for the subclasses of Helly circular-arc graphs, including forbidden induced subgraphs characterizations. These characterizations lead to efficient algorithms for recognizing graphs within these classes. Finally, we show how these classes of graphs relate with straight and round digraphs.
publishDate 2013
dc.date.none.fl_str_mv 2013-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/84437
Lin, Min Chih; Soulignac, Francisco Juan; Szwarcfiter, Jayme L.; Normal Helly circular-arc graphs and its subclasses; Elsevier Science; Discrete Applied Mathematics; 161; 7-8; 5-2013; 1037-1059
0166-218X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/84437
identifier_str_mv Lin, Min Chih; Soulignac, Francisco Juan; Szwarcfiter, Jayme L.; Normal Helly circular-arc graphs and its subclasses; Elsevier Science; Discrete Applied Mathematics; 161; 7-8; 5-2013; 1037-1059
0166-218X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2012.11.005
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0166218X12004295
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269049173573632
score 13.13397