Characterizations and recognition of circular-arc graphs and subclasses: A survey

Autores
Lin, M.C.; Szwarcfiter, J.L.
Año de publicación
2009
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Circular graphs are intersection graphs of arcs on a circle. These graphs are reported to have been studied since 1964, and they have been receiving considerable attention since a series of papers by Tucker in the 1970s. Various subclasses of circular-arc graphs have also been studied. Among these are the proper circular-arc graphs, unit circular-arc graphs, Helly circular-arc graphs and co-bipartite circular-arc graphs. Several characterizations and recognition algorithms have been formulated for circular-arc graphs and its subclasses. In particular, it should be mentioned that linear time algorithms are known for all these classes of graphs. In the present paper, we survey these characterizations and recognition algorithms, with emphasis on the linear time algorithms. © 2008 Elsevier B.V. All rights reserved.
Fil:Lin, M.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
Discrete Math 2009;309(18):5618-5635
Materia
Algorithms
Circular-arc graphs
Co-bipartite circular-arc graphs
Helly circular-arc graphs
Proper circular-arc graphs
Unit circular-arc graphs
Circular-arc graphs
Co-bipartite circular-arc graphs
Helly circular-arc graphs
Proper circular-arc graphs
Unit circular-arc graphs
Algorithms
Surveys
Cavity resonators
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_0012365X_v309_n18_p5618_Lin

id BDUBAFCEN_49bb62921bec0bc99058310d77b20e78
oai_identifier_str paperaa:paper_0012365X_v309_n18_p5618_Lin
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Characterizations and recognition of circular-arc graphs and subclasses: A surveyLin, M.C.Szwarcfiter, J.L.AlgorithmsCircular-arc graphsCo-bipartite circular-arc graphsHelly circular-arc graphsProper circular-arc graphsUnit circular-arc graphsCircular-arc graphsCo-bipartite circular-arc graphsHelly circular-arc graphsProper circular-arc graphsUnit circular-arc graphsAlgorithmsSurveysCavity resonatorsCircular graphs are intersection graphs of arcs on a circle. These graphs are reported to have been studied since 1964, and they have been receiving considerable attention since a series of papers by Tucker in the 1970s. Various subclasses of circular-arc graphs have also been studied. Among these are the proper circular-arc graphs, unit circular-arc graphs, Helly circular-arc graphs and co-bipartite circular-arc graphs. Several characterizations and recognition algorithms have been formulated for circular-arc graphs and its subclasses. In particular, it should be mentioned that linear time algorithms are known for all these classes of graphs. In the present paper, we survey these characterizations and recognition algorithms, with emphasis on the linear time algorithms. © 2008 Elsevier B.V. All rights reserved.Fil:Lin, M.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2009info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0012365X_v309_n18_p5618_LinDiscrete Math 2009;309(18):5618-5635reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-04T09:48:47Zpaperaa:paper_0012365X_v309_n18_p5618_LinInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-04 09:48:49.057Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Characterizations and recognition of circular-arc graphs and subclasses: A survey
title Characterizations and recognition of circular-arc graphs and subclasses: A survey
spellingShingle Characterizations and recognition of circular-arc graphs and subclasses: A survey
Lin, M.C.
Algorithms
Circular-arc graphs
Co-bipartite circular-arc graphs
Helly circular-arc graphs
Proper circular-arc graphs
Unit circular-arc graphs
Circular-arc graphs
Co-bipartite circular-arc graphs
Helly circular-arc graphs
Proper circular-arc graphs
Unit circular-arc graphs
Algorithms
Surveys
Cavity resonators
title_short Characterizations and recognition of circular-arc graphs and subclasses: A survey
title_full Characterizations and recognition of circular-arc graphs and subclasses: A survey
title_fullStr Characterizations and recognition of circular-arc graphs and subclasses: A survey
title_full_unstemmed Characterizations and recognition of circular-arc graphs and subclasses: A survey
title_sort Characterizations and recognition of circular-arc graphs and subclasses: A survey
dc.creator.none.fl_str_mv Lin, M.C.
Szwarcfiter, J.L.
author Lin, M.C.
author_facet Lin, M.C.
Szwarcfiter, J.L.
author_role author
author2 Szwarcfiter, J.L.
author2_role author
dc.subject.none.fl_str_mv Algorithms
Circular-arc graphs
Co-bipartite circular-arc graphs
Helly circular-arc graphs
Proper circular-arc graphs
Unit circular-arc graphs
Circular-arc graphs
Co-bipartite circular-arc graphs
Helly circular-arc graphs
Proper circular-arc graphs
Unit circular-arc graphs
Algorithms
Surveys
Cavity resonators
topic Algorithms
Circular-arc graphs
Co-bipartite circular-arc graphs
Helly circular-arc graphs
Proper circular-arc graphs
Unit circular-arc graphs
Circular-arc graphs
Co-bipartite circular-arc graphs
Helly circular-arc graphs
Proper circular-arc graphs
Unit circular-arc graphs
Algorithms
Surveys
Cavity resonators
dc.description.none.fl_txt_mv Circular graphs are intersection graphs of arcs on a circle. These graphs are reported to have been studied since 1964, and they have been receiving considerable attention since a series of papers by Tucker in the 1970s. Various subclasses of circular-arc graphs have also been studied. Among these are the proper circular-arc graphs, unit circular-arc graphs, Helly circular-arc graphs and co-bipartite circular-arc graphs. Several characterizations and recognition algorithms have been formulated for circular-arc graphs and its subclasses. In particular, it should be mentioned that linear time algorithms are known for all these classes of graphs. In the present paper, we survey these characterizations and recognition algorithms, with emphasis on the linear time algorithms. © 2008 Elsevier B.V. All rights reserved.
Fil:Lin, M.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description Circular graphs are intersection graphs of arcs on a circle. These graphs are reported to have been studied since 1964, and they have been receiving considerable attention since a series of papers by Tucker in the 1970s. Various subclasses of circular-arc graphs have also been studied. Among these are the proper circular-arc graphs, unit circular-arc graphs, Helly circular-arc graphs and co-bipartite circular-arc graphs. Several characterizations and recognition algorithms have been formulated for circular-arc graphs and its subclasses. In particular, it should be mentioned that linear time algorithms are known for all these classes of graphs. In the present paper, we survey these characterizations and recognition algorithms, with emphasis on the linear time algorithms. © 2008 Elsevier B.V. All rights reserved.
publishDate 2009
dc.date.none.fl_str_mv 2009
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_0012365X_v309_n18_p5618_Lin
url http://hdl.handle.net/20.500.12110/paper_0012365X_v309_n18_p5618_Lin
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Discrete Math 2009;309(18):5618-5635
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1842340707906355200
score 12.623145