Biduals of tensor products in operator spaces
- Autores
- Dimant, Veronica Isabel; Fernández Unzueta, Maite
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study whether the operator space V ∗∗ α ⊗ W∗∗ can be identified with a subspace of the bidual space (V α ⊗ W) ∗∗, for a given operator space tensor norm. We prove that this can be done if α is finitely generated and V and W are locally reflexive. If in addition the dual spaces are locally reflexive and the bidual spaces have the completely bounded approximation property, then the identification is through a complete isomorphism. When α is the projective, Haagerup or injective norm, the hypotheses can be weakened.
Fil: Dimant, Veronica Isabel. Universidad de San Andrés. Departamento de Matemáticas y Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Fernández Unzueta, Maite. Centro de Investigación en Matemáticas; México - Materia
-
Operator Spaces
Tensor Products
Bilinear Mappings - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/42352
Ver los metadatos del registro completo
id |
CONICETDig_acadd9a4db91ec90147d969cad7992c4 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/42352 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Biduals of tensor products in operator spacesDimant, Veronica IsabelFernández Unzueta, MaiteOperator SpacesTensor ProductsBilinear Mappingshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study whether the operator space V ∗∗ α ⊗ W∗∗ can be identified with a subspace of the bidual space (V α ⊗ W) ∗∗, for a given operator space tensor norm. We prove that this can be done if α is finitely generated and V and W are locally reflexive. If in addition the dual spaces are locally reflexive and the bidual spaces have the completely bounded approximation property, then the identification is through a complete isomorphism. When α is the projective, Haagerup or injective norm, the hypotheses can be weakened.Fil: Dimant, Veronica Isabel. Universidad de San Andrés. Departamento de Matemáticas y Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Fernández Unzueta, Maite. Centro de Investigación en Matemáticas; MéxicoPolish Academy of Sciences. Institute of Mathematics2015-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/42352Dimant, Veronica Isabel; Fernández Unzueta, Maite; Biduals of tensor products in operator spaces; Polish Academy of Sciences. Institute of Mathematics; Studia Mathematica; 230; 2; 12-2015; 165-1850039-3223CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://pldml.icm.edu.pl/pldml/element/bwmeta1.element.bwnjournal-article-doi-10_4064-sm8292-1-2016info:eu-repo/semantics/altIdentifier/doi/10.4064/sm8292-1-2016info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:47:02Zoai:ri.conicet.gov.ar:11336/42352instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:47:02.313CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Biduals of tensor products in operator spaces |
title |
Biduals of tensor products in operator spaces |
spellingShingle |
Biduals of tensor products in operator spaces Dimant, Veronica Isabel Operator Spaces Tensor Products Bilinear Mappings |
title_short |
Biduals of tensor products in operator spaces |
title_full |
Biduals of tensor products in operator spaces |
title_fullStr |
Biduals of tensor products in operator spaces |
title_full_unstemmed |
Biduals of tensor products in operator spaces |
title_sort |
Biduals of tensor products in operator spaces |
dc.creator.none.fl_str_mv |
Dimant, Veronica Isabel Fernández Unzueta, Maite |
author |
Dimant, Veronica Isabel |
author_facet |
Dimant, Veronica Isabel Fernández Unzueta, Maite |
author_role |
author |
author2 |
Fernández Unzueta, Maite |
author2_role |
author |
dc.subject.none.fl_str_mv |
Operator Spaces Tensor Products Bilinear Mappings |
topic |
Operator Spaces Tensor Products Bilinear Mappings |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study whether the operator space V ∗∗ α ⊗ W∗∗ can be identified with a subspace of the bidual space (V α ⊗ W) ∗∗, for a given operator space tensor norm. We prove that this can be done if α is finitely generated and V and W are locally reflexive. If in addition the dual spaces are locally reflexive and the bidual spaces have the completely bounded approximation property, then the identification is through a complete isomorphism. When α is the projective, Haagerup or injective norm, the hypotheses can be weakened. Fil: Dimant, Veronica Isabel. Universidad de San Andrés. Departamento de Matemáticas y Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Fernández Unzueta, Maite. Centro de Investigación en Matemáticas; México |
description |
We study whether the operator space V ∗∗ α ⊗ W∗∗ can be identified with a subspace of the bidual space (V α ⊗ W) ∗∗, for a given operator space tensor norm. We prove that this can be done if α is finitely generated and V and W are locally reflexive. If in addition the dual spaces are locally reflexive and the bidual spaces have the completely bounded approximation property, then the identification is through a complete isomorphism. When α is the projective, Haagerup or injective norm, the hypotheses can be weakened. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/42352 Dimant, Veronica Isabel; Fernández Unzueta, Maite; Biduals of tensor products in operator spaces; Polish Academy of Sciences. Institute of Mathematics; Studia Mathematica; 230; 2; 12-2015; 165-185 0039-3223 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/42352 |
identifier_str_mv |
Dimant, Veronica Isabel; Fernández Unzueta, Maite; Biduals of tensor products in operator spaces; Polish Academy of Sciences. Institute of Mathematics; Studia Mathematica; 230; 2; 12-2015; 165-185 0039-3223 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://pldml.icm.edu.pl/pldml/element/bwmeta1.element.bwnjournal-article-doi-10_4064-sm8292-1-2016 info:eu-repo/semantics/altIdentifier/doi/10.4064/sm8292-1-2016 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Polish Academy of Sciences. Institute of Mathematics |
publisher.none.fl_str_mv |
Polish Academy of Sciences. Institute of Mathematics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614513336254464 |
score |
13.070432 |