Gain modulation of synaptic inputs by network state in auditory cortex in vivo

Autores
Reig, Ramon; Zerlaut, Yann; Vergara, Ramiro Oscar; Destexhe, Alain; Sánchez Vives, María V.
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The cortical network recurrent circuitry generates spontaneous activity organized into Up (active) and Down (quiescent) states during slow-wave sleep or anesthesia. These different states of cortical activation gain modulate synaptic transmission. However, the reported modulation that Up states impose on synaptic inputs is disparate in the literature, including both increases and decreases of responsiveness. Here, we tested the hypothesis that such disparate observations may depend on the intensity of the stimulation. By means of intracellular recordings, we studied synaptic transmission during Up and Down states in rat auditory cortex in vivo. Synaptic potentials were evoked either by auditory or electrical (thalamocortical, intracortical) stimulation while randomly varying the intensity of the stimulus. Synaptic potentials evoked by the same stimulus intensity were compared in Up/Down states. Up states had a scaling effect on the stimulus-evoked synaptic responses: the amplitude of weaker responses was potentiated whereas that of larger responses was maintained or decreased with respect to the amplitude during Down states. We used a computational model to explore the potential mechanisms explaining this nontrivial stimulus–response relationship. During Up/Down states, there is different excitability in the network and the neuronal conductance varies. We demonstrate that the competition between presynaptic recruitment and the changing conductance might be the central mechanism explaining the experimentally observed stimulus–response relationships. We conclude that the effect that cortical network activation has on synaptic transmission is not constant but contingent on the strength of the stimulation, with a larger modulation for stimuli involving both thalamic and cortical networks.
Fil: Reig, Ramon. Institut d'Investigacions Biomèdiques August Pi i Sunyer; España. Karolinska Huddinge Hospital. Karolinska Institutet; Suecia
Fil: Zerlaut, Yann. Centre National de la Recherche Scientifique; Francia. Unité de Neurosciences, Information et Complexité; Francia
Fil: Vergara, Ramiro Oscar. Institut d'Investigacions Biomèdiques August Pi i Sunyer; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Acústica y Percepción Sonora; Argentina
Fil: Destexhe, Alain. Centre National de la Recherche Scientifique; Francia. Unité de Neurosciences, Information et Complexité; Francia
Fil: Sánchez Vives, María V.. Institut d'Investigacions Biomèdiques August Pi i Sunyer; España. Institució Catalana de Recerca i Estudis Avancats; España
Materia
CEREBRAL CORTEX
COMPUTATIONAL MODEL
OSCILLATIONS
SYNAPTIC INPUTS
THALAMOCORTICAL
UP STATES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/38163

id CONICETDig_ac79b596891df462ce19fb9f4b769f73
oai_identifier_str oai:ri.conicet.gov.ar:11336/38163
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Gain modulation of synaptic inputs by network state in auditory cortex in vivoReig, RamonZerlaut, YannVergara, Ramiro OscarDestexhe, AlainSánchez Vives, María V.CEREBRAL CORTEXCOMPUTATIONAL MODELOSCILLATIONSSYNAPTIC INPUTSTHALAMOCORTICALUP STATEShttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1The cortical network recurrent circuitry generates spontaneous activity organized into Up (active) and Down (quiescent) states during slow-wave sleep or anesthesia. These different states of cortical activation gain modulate synaptic transmission. However, the reported modulation that Up states impose on synaptic inputs is disparate in the literature, including both increases and decreases of responsiveness. Here, we tested the hypothesis that such disparate observations may depend on the intensity of the stimulation. By means of intracellular recordings, we studied synaptic transmission during Up and Down states in rat auditory cortex in vivo. Synaptic potentials were evoked either by auditory or electrical (thalamocortical, intracortical) stimulation while randomly varying the intensity of the stimulus. Synaptic potentials evoked by the same stimulus intensity were compared in Up/Down states. Up states had a scaling effect on the stimulus-evoked synaptic responses: the amplitude of weaker responses was potentiated whereas that of larger responses was maintained or decreased with respect to the amplitude during Down states. We used a computational model to explore the potential mechanisms explaining this nontrivial stimulus–response relationship. During Up/Down states, there is different excitability in the network and the neuronal conductance varies. We demonstrate that the competition between presynaptic recruitment and the changing conductance might be the central mechanism explaining the experimentally observed stimulus–response relationships. We conclude that the effect that cortical network activation has on synaptic transmission is not constant but contingent on the strength of the stimulation, with a larger modulation for stimuli involving both thalamic and cortical networks.Fil: Reig, Ramon. Institut d'Investigacions Biomèdiques August Pi i Sunyer; España. Karolinska Huddinge Hospital. Karolinska Institutet; SueciaFil: Zerlaut, Yann. Centre National de la Recherche Scientifique; Francia. Unité de Neurosciences, Information et Complexité; FranciaFil: Vergara, Ramiro Oscar. Institut d'Investigacions Biomèdiques August Pi i Sunyer; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Acústica y Percepción Sonora; ArgentinaFil: Destexhe, Alain. Centre National de la Recherche Scientifique; Francia. Unité de Neurosciences, Information et Complexité; FranciaFil: Sánchez Vives, María V.. Institut d'Investigacions Biomèdiques August Pi i Sunyer; España. Institució Catalana de Recerca i Estudis Avancats; EspañaSociety for Neuroscience2015-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/38163Reig, Ramon; Zerlaut, Yann; Vergara, Ramiro Oscar; Destexhe, Alain; Sánchez Vives, María V.; Gain modulation of synaptic inputs by network state in auditory cortex in vivo; Society for Neuroscience; Journal of Neuroscience; 35; 6; 2-2015; 2689-27020270-6474CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1523/JNEUROSCI.2004-14.2015info:eu-repo/semantics/altIdentifier/url/http://www.jneurosci.org/content/35/6/2689/tab-article-infoinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:16:51Zoai:ri.conicet.gov.ar:11336/38163instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:16:51.42CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Gain modulation of synaptic inputs by network state in auditory cortex in vivo
title Gain modulation of synaptic inputs by network state in auditory cortex in vivo
spellingShingle Gain modulation of synaptic inputs by network state in auditory cortex in vivo
Reig, Ramon
CEREBRAL CORTEX
COMPUTATIONAL MODEL
OSCILLATIONS
SYNAPTIC INPUTS
THALAMOCORTICAL
UP STATES
title_short Gain modulation of synaptic inputs by network state in auditory cortex in vivo
title_full Gain modulation of synaptic inputs by network state in auditory cortex in vivo
title_fullStr Gain modulation of synaptic inputs by network state in auditory cortex in vivo
title_full_unstemmed Gain modulation of synaptic inputs by network state in auditory cortex in vivo
title_sort Gain modulation of synaptic inputs by network state in auditory cortex in vivo
dc.creator.none.fl_str_mv Reig, Ramon
Zerlaut, Yann
Vergara, Ramiro Oscar
Destexhe, Alain
Sánchez Vives, María V.
author Reig, Ramon
author_facet Reig, Ramon
Zerlaut, Yann
Vergara, Ramiro Oscar
Destexhe, Alain
Sánchez Vives, María V.
author_role author
author2 Zerlaut, Yann
Vergara, Ramiro Oscar
Destexhe, Alain
Sánchez Vives, María V.
author2_role author
author
author
author
dc.subject.none.fl_str_mv CEREBRAL CORTEX
COMPUTATIONAL MODEL
OSCILLATIONS
SYNAPTIC INPUTS
THALAMOCORTICAL
UP STATES
topic CEREBRAL CORTEX
COMPUTATIONAL MODEL
OSCILLATIONS
SYNAPTIC INPUTS
THALAMOCORTICAL
UP STATES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The cortical network recurrent circuitry generates spontaneous activity organized into Up (active) and Down (quiescent) states during slow-wave sleep or anesthesia. These different states of cortical activation gain modulate synaptic transmission. However, the reported modulation that Up states impose on synaptic inputs is disparate in the literature, including both increases and decreases of responsiveness. Here, we tested the hypothesis that such disparate observations may depend on the intensity of the stimulation. By means of intracellular recordings, we studied synaptic transmission during Up and Down states in rat auditory cortex in vivo. Synaptic potentials were evoked either by auditory or electrical (thalamocortical, intracortical) stimulation while randomly varying the intensity of the stimulus. Synaptic potentials evoked by the same stimulus intensity were compared in Up/Down states. Up states had a scaling effect on the stimulus-evoked synaptic responses: the amplitude of weaker responses was potentiated whereas that of larger responses was maintained or decreased with respect to the amplitude during Down states. We used a computational model to explore the potential mechanisms explaining this nontrivial stimulus–response relationship. During Up/Down states, there is different excitability in the network and the neuronal conductance varies. We demonstrate that the competition between presynaptic recruitment and the changing conductance might be the central mechanism explaining the experimentally observed stimulus–response relationships. We conclude that the effect that cortical network activation has on synaptic transmission is not constant but contingent on the strength of the stimulation, with a larger modulation for stimuli involving both thalamic and cortical networks.
Fil: Reig, Ramon. Institut d'Investigacions Biomèdiques August Pi i Sunyer; España. Karolinska Huddinge Hospital. Karolinska Institutet; Suecia
Fil: Zerlaut, Yann. Centre National de la Recherche Scientifique; Francia. Unité de Neurosciences, Information et Complexité; Francia
Fil: Vergara, Ramiro Oscar. Institut d'Investigacions Biomèdiques August Pi i Sunyer; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Acústica y Percepción Sonora; Argentina
Fil: Destexhe, Alain. Centre National de la Recherche Scientifique; Francia. Unité de Neurosciences, Information et Complexité; Francia
Fil: Sánchez Vives, María V.. Institut d'Investigacions Biomèdiques August Pi i Sunyer; España. Institució Catalana de Recerca i Estudis Avancats; España
description The cortical network recurrent circuitry generates spontaneous activity organized into Up (active) and Down (quiescent) states during slow-wave sleep or anesthesia. These different states of cortical activation gain modulate synaptic transmission. However, the reported modulation that Up states impose on synaptic inputs is disparate in the literature, including both increases and decreases of responsiveness. Here, we tested the hypothesis that such disparate observations may depend on the intensity of the stimulation. By means of intracellular recordings, we studied synaptic transmission during Up and Down states in rat auditory cortex in vivo. Synaptic potentials were evoked either by auditory or electrical (thalamocortical, intracortical) stimulation while randomly varying the intensity of the stimulus. Synaptic potentials evoked by the same stimulus intensity were compared in Up/Down states. Up states had a scaling effect on the stimulus-evoked synaptic responses: the amplitude of weaker responses was potentiated whereas that of larger responses was maintained or decreased with respect to the amplitude during Down states. We used a computational model to explore the potential mechanisms explaining this nontrivial stimulus–response relationship. During Up/Down states, there is different excitability in the network and the neuronal conductance varies. We demonstrate that the competition between presynaptic recruitment and the changing conductance might be the central mechanism explaining the experimentally observed stimulus–response relationships. We conclude that the effect that cortical network activation has on synaptic transmission is not constant but contingent on the strength of the stimulation, with a larger modulation for stimuli involving both thalamic and cortical networks.
publishDate 2015
dc.date.none.fl_str_mv 2015-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/38163
Reig, Ramon; Zerlaut, Yann; Vergara, Ramiro Oscar; Destexhe, Alain; Sánchez Vives, María V.; Gain modulation of synaptic inputs by network state in auditory cortex in vivo; Society for Neuroscience; Journal of Neuroscience; 35; 6; 2-2015; 2689-2702
0270-6474
CONICET Digital
CONICET
url http://hdl.handle.net/11336/38163
identifier_str_mv Reig, Ramon; Zerlaut, Yann; Vergara, Ramiro Oscar; Destexhe, Alain; Sánchez Vives, María V.; Gain modulation of synaptic inputs by network state in auditory cortex in vivo; Society for Neuroscience; Journal of Neuroscience; 35; 6; 2-2015; 2689-2702
0270-6474
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1523/JNEUROSCI.2004-14.2015
info:eu-repo/semantics/altIdentifier/url/http://www.jneurosci.org/content/35/6/2689/tab-article-info
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Society for Neuroscience
publisher.none.fl_str_mv Society for Neuroscience
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083317357608960
score 13.22299