Gain modulation of synaptic inputs by network state in auditory cortex in vivo
- Autores
- Reig, Ramon; Zerlaut, Yann; Vergara, Ramiro Oscar; Destexhe, Alain; Sánchez Vives, María V.
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The cortical network recurrent circuitry generates spontaneous activity organized into Up (active) and Down (quiescent) states during slow-wave sleep or anesthesia. These different states of cortical activation gain modulate synaptic transmission. However, the reported modulation that Up states impose on synaptic inputs is disparate in the literature, including both increases and decreases of responsiveness. Here, we tested the hypothesis that such disparate observations may depend on the intensity of the stimulation. By means of intracellular recordings, we studied synaptic transmission during Up and Down states in rat auditory cortex in vivo. Synaptic potentials were evoked either by auditory or electrical (thalamocortical, intracortical) stimulation while randomly varying the intensity of the stimulus. Synaptic potentials evoked by the same stimulus intensity were compared in Up/Down states. Up states had a scaling effect on the stimulus-evoked synaptic responses: the amplitude of weaker responses was potentiated whereas that of larger responses was maintained or decreased with respect to the amplitude during Down states. We used a computational model to explore the potential mechanisms explaining this nontrivial stimulus–response relationship. During Up/Down states, there is different excitability in the network and the neuronal conductance varies. We demonstrate that the competition between presynaptic recruitment and the changing conductance might be the central mechanism explaining the experimentally observed stimulus–response relationships. We conclude that the effect that cortical network activation has on synaptic transmission is not constant but contingent on the strength of the stimulation, with a larger modulation for stimuli involving both thalamic and cortical networks.
Fil: Reig, Ramon. Institut d'Investigacions Biomèdiques August Pi i Sunyer; España. Karolinska Huddinge Hospital. Karolinska Institutet; Suecia
Fil: Zerlaut, Yann. Centre National de la Recherche Scientifique; Francia. Unité de Neurosciences, Information et Complexité; Francia
Fil: Vergara, Ramiro Oscar. Institut d'Investigacions Biomèdiques August Pi i Sunyer; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Acústica y Percepción Sonora; Argentina
Fil: Destexhe, Alain. Centre National de la Recherche Scientifique; Francia. Unité de Neurosciences, Information et Complexité; Francia
Fil: Sánchez Vives, María V.. Institut d'Investigacions Biomèdiques August Pi i Sunyer; España. Institució Catalana de Recerca i Estudis Avancats; España - Materia
-
CEREBRAL CORTEX
COMPUTATIONAL MODEL
OSCILLATIONS
SYNAPTIC INPUTS
THALAMOCORTICAL
UP STATES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/38163
Ver los metadatos del registro completo
id |
CONICETDig_ac79b596891df462ce19fb9f4b769f73 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/38163 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Gain modulation of synaptic inputs by network state in auditory cortex in vivoReig, RamonZerlaut, YannVergara, Ramiro OscarDestexhe, AlainSánchez Vives, María V.CEREBRAL CORTEXCOMPUTATIONAL MODELOSCILLATIONSSYNAPTIC INPUTSTHALAMOCORTICALUP STATEShttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1The cortical network recurrent circuitry generates spontaneous activity organized into Up (active) and Down (quiescent) states during slow-wave sleep or anesthesia. These different states of cortical activation gain modulate synaptic transmission. However, the reported modulation that Up states impose on synaptic inputs is disparate in the literature, including both increases and decreases of responsiveness. Here, we tested the hypothesis that such disparate observations may depend on the intensity of the stimulation. By means of intracellular recordings, we studied synaptic transmission during Up and Down states in rat auditory cortex in vivo. Synaptic potentials were evoked either by auditory or electrical (thalamocortical, intracortical) stimulation while randomly varying the intensity of the stimulus. Synaptic potentials evoked by the same stimulus intensity were compared in Up/Down states. Up states had a scaling effect on the stimulus-evoked synaptic responses: the amplitude of weaker responses was potentiated whereas that of larger responses was maintained or decreased with respect to the amplitude during Down states. We used a computational model to explore the potential mechanisms explaining this nontrivial stimulus–response relationship. During Up/Down states, there is different excitability in the network and the neuronal conductance varies. We demonstrate that the competition between presynaptic recruitment and the changing conductance might be the central mechanism explaining the experimentally observed stimulus–response relationships. We conclude that the effect that cortical network activation has on synaptic transmission is not constant but contingent on the strength of the stimulation, with a larger modulation for stimuli involving both thalamic and cortical networks.Fil: Reig, Ramon. Institut d'Investigacions Biomèdiques August Pi i Sunyer; España. Karolinska Huddinge Hospital. Karolinska Institutet; SueciaFil: Zerlaut, Yann. Centre National de la Recherche Scientifique; Francia. Unité de Neurosciences, Information et Complexité; FranciaFil: Vergara, Ramiro Oscar. Institut d'Investigacions Biomèdiques August Pi i Sunyer; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Acústica y Percepción Sonora; ArgentinaFil: Destexhe, Alain. Centre National de la Recherche Scientifique; Francia. Unité de Neurosciences, Information et Complexité; FranciaFil: Sánchez Vives, María V.. Institut d'Investigacions Biomèdiques August Pi i Sunyer; España. Institució Catalana de Recerca i Estudis Avancats; EspañaSociety for Neuroscience2015-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/38163Reig, Ramon; Zerlaut, Yann; Vergara, Ramiro Oscar; Destexhe, Alain; Sánchez Vives, María V.; Gain modulation of synaptic inputs by network state in auditory cortex in vivo; Society for Neuroscience; Journal of Neuroscience; 35; 6; 2-2015; 2689-27020270-6474CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1523/JNEUROSCI.2004-14.2015info:eu-repo/semantics/altIdentifier/url/http://www.jneurosci.org/content/35/6/2689/tab-article-infoinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:16:51Zoai:ri.conicet.gov.ar:11336/38163instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:16:51.42CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Gain modulation of synaptic inputs by network state in auditory cortex in vivo |
title |
Gain modulation of synaptic inputs by network state in auditory cortex in vivo |
spellingShingle |
Gain modulation of synaptic inputs by network state in auditory cortex in vivo Reig, Ramon CEREBRAL CORTEX COMPUTATIONAL MODEL OSCILLATIONS SYNAPTIC INPUTS THALAMOCORTICAL UP STATES |
title_short |
Gain modulation of synaptic inputs by network state in auditory cortex in vivo |
title_full |
Gain modulation of synaptic inputs by network state in auditory cortex in vivo |
title_fullStr |
Gain modulation of synaptic inputs by network state in auditory cortex in vivo |
title_full_unstemmed |
Gain modulation of synaptic inputs by network state in auditory cortex in vivo |
title_sort |
Gain modulation of synaptic inputs by network state in auditory cortex in vivo |
dc.creator.none.fl_str_mv |
Reig, Ramon Zerlaut, Yann Vergara, Ramiro Oscar Destexhe, Alain Sánchez Vives, María V. |
author |
Reig, Ramon |
author_facet |
Reig, Ramon Zerlaut, Yann Vergara, Ramiro Oscar Destexhe, Alain Sánchez Vives, María V. |
author_role |
author |
author2 |
Zerlaut, Yann Vergara, Ramiro Oscar Destexhe, Alain Sánchez Vives, María V. |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
CEREBRAL CORTEX COMPUTATIONAL MODEL OSCILLATIONS SYNAPTIC INPUTS THALAMOCORTICAL UP STATES |
topic |
CEREBRAL CORTEX COMPUTATIONAL MODEL OSCILLATIONS SYNAPTIC INPUTS THALAMOCORTICAL UP STATES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The cortical network recurrent circuitry generates spontaneous activity organized into Up (active) and Down (quiescent) states during slow-wave sleep or anesthesia. These different states of cortical activation gain modulate synaptic transmission. However, the reported modulation that Up states impose on synaptic inputs is disparate in the literature, including both increases and decreases of responsiveness. Here, we tested the hypothesis that such disparate observations may depend on the intensity of the stimulation. By means of intracellular recordings, we studied synaptic transmission during Up and Down states in rat auditory cortex in vivo. Synaptic potentials were evoked either by auditory or electrical (thalamocortical, intracortical) stimulation while randomly varying the intensity of the stimulus. Synaptic potentials evoked by the same stimulus intensity were compared in Up/Down states. Up states had a scaling effect on the stimulus-evoked synaptic responses: the amplitude of weaker responses was potentiated whereas that of larger responses was maintained or decreased with respect to the amplitude during Down states. We used a computational model to explore the potential mechanisms explaining this nontrivial stimulus–response relationship. During Up/Down states, there is different excitability in the network and the neuronal conductance varies. We demonstrate that the competition between presynaptic recruitment and the changing conductance might be the central mechanism explaining the experimentally observed stimulus–response relationships. We conclude that the effect that cortical network activation has on synaptic transmission is not constant but contingent on the strength of the stimulation, with a larger modulation for stimuli involving both thalamic and cortical networks. Fil: Reig, Ramon. Institut d'Investigacions Biomèdiques August Pi i Sunyer; España. Karolinska Huddinge Hospital. Karolinska Institutet; Suecia Fil: Zerlaut, Yann. Centre National de la Recherche Scientifique; Francia. Unité de Neurosciences, Information et Complexité; Francia Fil: Vergara, Ramiro Oscar. Institut d'Investigacions Biomèdiques August Pi i Sunyer; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Acústica y Percepción Sonora; Argentina Fil: Destexhe, Alain. Centre National de la Recherche Scientifique; Francia. Unité de Neurosciences, Information et Complexité; Francia Fil: Sánchez Vives, María V.. Institut d'Investigacions Biomèdiques August Pi i Sunyer; España. Institució Catalana de Recerca i Estudis Avancats; España |
description |
The cortical network recurrent circuitry generates spontaneous activity organized into Up (active) and Down (quiescent) states during slow-wave sleep or anesthesia. These different states of cortical activation gain modulate synaptic transmission. However, the reported modulation that Up states impose on synaptic inputs is disparate in the literature, including both increases and decreases of responsiveness. Here, we tested the hypothesis that such disparate observations may depend on the intensity of the stimulation. By means of intracellular recordings, we studied synaptic transmission during Up and Down states in rat auditory cortex in vivo. Synaptic potentials were evoked either by auditory or electrical (thalamocortical, intracortical) stimulation while randomly varying the intensity of the stimulus. Synaptic potentials evoked by the same stimulus intensity were compared in Up/Down states. Up states had a scaling effect on the stimulus-evoked synaptic responses: the amplitude of weaker responses was potentiated whereas that of larger responses was maintained or decreased with respect to the amplitude during Down states. We used a computational model to explore the potential mechanisms explaining this nontrivial stimulus–response relationship. During Up/Down states, there is different excitability in the network and the neuronal conductance varies. We demonstrate that the competition between presynaptic recruitment and the changing conductance might be the central mechanism explaining the experimentally observed stimulus–response relationships. We conclude that the effect that cortical network activation has on synaptic transmission is not constant but contingent on the strength of the stimulation, with a larger modulation for stimuli involving both thalamic and cortical networks. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/38163 Reig, Ramon; Zerlaut, Yann; Vergara, Ramiro Oscar; Destexhe, Alain; Sánchez Vives, María V.; Gain modulation of synaptic inputs by network state in auditory cortex in vivo; Society for Neuroscience; Journal of Neuroscience; 35; 6; 2-2015; 2689-2702 0270-6474 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/38163 |
identifier_str_mv |
Reig, Ramon; Zerlaut, Yann; Vergara, Ramiro Oscar; Destexhe, Alain; Sánchez Vives, María V.; Gain modulation of synaptic inputs by network state in auditory cortex in vivo; Society for Neuroscience; Journal of Neuroscience; 35; 6; 2-2015; 2689-2702 0270-6474 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1523/JNEUROSCI.2004-14.2015 info:eu-repo/semantics/altIdentifier/url/http://www.jneurosci.org/content/35/6/2689/tab-article-info |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Society for Neuroscience |
publisher.none.fl_str_mv |
Society for Neuroscience |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083317357608960 |
score |
13.22299 |