Contrasting termination criteria for genetic algorithms
- Autores
- Bermúdez, Carlos; Alfonso, Hugo; Gallard, Raúl Hector
- Año de publicación
- 1999
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- To find a good termination criterion for genetic algorithms is a difficult and frequently ignored task. In most instances the practitioner stops the algorittm after a predefined number of generations or function evaluations. How this number is established? This stop criteria assume a user's knowledge on the characteristic of the function, which influence the length of the search. But usually it is difficult to say a priori that the total number of generations should be a detemined one. ConsequentIy this approach can involve a waste of computational resources, because the genetic algorithm could stagnate at some local or global optimum and no further improvement is achieved in that condition. This presentation discusses perfomance results on evolutionary algorithms optimizing four highly multimodal functions (Michalewicz's F1 and F2, Branin's Rcos, Griewank's). The genotypic and phenotypic approaches were implemented using the Grefenstette's bias b and the stability of mean population fitness as measures of convergence, respectively. Quality of results and speed of convergence are the main perfomance variables contrasted.
Eje: Redes y sistemas inteligentes
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
ARTIFICIAL INTELLIGENCE
Algorithms
genetic algorithms
contrasting termination criteria - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/22218
Ver los metadatos del registro completo
id |
SEDICI_360a0c7600b06659b887b3b1b867f90c |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/22218 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Contrasting termination criteria for genetic algorithmsBermúdez, CarlosAlfonso, HugoGallard, Raúl HectorCiencias InformáticasARTIFICIAL INTELLIGENCEAlgorithmsgenetic algorithmscontrasting termination criteriaTo find a good termination criterion for genetic algorithms is a difficult and frequently ignored task. In most instances the practitioner stops the algorittm after a predefined number of generations or function evaluations. How this number is established? This stop criteria assume a user's knowledge on the characteristic of the function, which influence the length of the search. But usually it is difficult to say a priori that the total number of generations should be a detemined one. ConsequentIy this approach can involve a waste of computational resources, because the genetic algorithm could stagnate at some local or global optimum and no further improvement is achieved in that condition. This presentation discusses perfomance results on evolutionary algorithms optimizing four highly multimodal functions (Michalewicz's F1 and F2, Branin's Rcos, Griewank's). The genotypic and phenotypic approaches were implemented using the Grefenstette's bias b and the stability of mean population fitness as measures of convergence, respectively. Quality of results and speed of convergence are the main perfomance variables contrasted.Eje: Redes y sistemas inteligentesRed de Universidades con Carreras en Informática (RedUNCI)1999-05info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/22218spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:27:47Zoai:sedici.unlp.edu.ar:10915/22218Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:27:47.688SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Contrasting termination criteria for genetic algorithms |
title |
Contrasting termination criteria for genetic algorithms |
spellingShingle |
Contrasting termination criteria for genetic algorithms Bermúdez, Carlos Ciencias Informáticas ARTIFICIAL INTELLIGENCE Algorithms genetic algorithms contrasting termination criteria |
title_short |
Contrasting termination criteria for genetic algorithms |
title_full |
Contrasting termination criteria for genetic algorithms |
title_fullStr |
Contrasting termination criteria for genetic algorithms |
title_full_unstemmed |
Contrasting termination criteria for genetic algorithms |
title_sort |
Contrasting termination criteria for genetic algorithms |
dc.creator.none.fl_str_mv |
Bermúdez, Carlos Alfonso, Hugo Gallard, Raúl Hector |
author |
Bermúdez, Carlos |
author_facet |
Bermúdez, Carlos Alfonso, Hugo Gallard, Raúl Hector |
author_role |
author |
author2 |
Alfonso, Hugo Gallard, Raúl Hector |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas ARTIFICIAL INTELLIGENCE Algorithms genetic algorithms contrasting termination criteria |
topic |
Ciencias Informáticas ARTIFICIAL INTELLIGENCE Algorithms genetic algorithms contrasting termination criteria |
dc.description.none.fl_txt_mv |
To find a good termination criterion for genetic algorithms is a difficult and frequently ignored task. In most instances the practitioner stops the algorittm after a predefined number of generations or function evaluations. How this number is established? This stop criteria assume a user's knowledge on the characteristic of the function, which influence the length of the search. But usually it is difficult to say a priori that the total number of generations should be a detemined one. ConsequentIy this approach can involve a waste of computational resources, because the genetic algorithm could stagnate at some local or global optimum and no further improvement is achieved in that condition. This presentation discusses perfomance results on evolutionary algorithms optimizing four highly multimodal functions (Michalewicz's F1 and F2, Branin's Rcos, Griewank's). The genotypic and phenotypic approaches were implemented using the Grefenstette's bias b and the stability of mean population fitness as measures of convergence, respectively. Quality of results and speed of convergence are the main perfomance variables contrasted. Eje: Redes y sistemas inteligentes Red de Universidades con Carreras en Informática (RedUNCI) |
description |
To find a good termination criterion for genetic algorithms is a difficult and frequently ignored task. In most instances the practitioner stops the algorittm after a predefined number of generations or function evaluations. How this number is established? This stop criteria assume a user's knowledge on the characteristic of the function, which influence the length of the search. But usually it is difficult to say a priori that the total number of generations should be a detemined one. ConsequentIy this approach can involve a waste of computational resources, because the genetic algorithm could stagnate at some local or global optimum and no further improvement is achieved in that condition. This presentation discusses perfomance results on evolutionary algorithms optimizing four highly multimodal functions (Michalewicz's F1 and F2, Branin's Rcos, Griewank's). The genotypic and phenotypic approaches were implemented using the Grefenstette's bias b and the stability of mean population fitness as measures of convergence, respectively. Quality of results and speed of convergence are the main perfomance variables contrasted. |
publishDate |
1999 |
dc.date.none.fl_str_mv |
1999-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/22218 |
url |
http://sedici.unlp.edu.ar/handle/10915/22218 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260115999162368 |
score |
13.13397 |