Molecular engineering improves antigen quality and enables integrated manufacturing of a trivalent subunit vaccine candidate for rotavirus

Autores
Dalvie, Neil C.; Brady, Joseph R.; Crowell, Laura E.; Tracey, Mary Kate; Biedermann, Andrew M.; Kaur, Kawaljit; Hickey, John M.; Kristensen, D. Lee; Bonnyman, Alexandra D.; Rodriguez Aponte, Sergio A.; Whittaker, Charles A.; Bok, Marina; Vega, Celina Guadalupe; Mukhopadhyay, Tarit K.; Joshi, Sangeeta B.; Volkin, David B.; Parreño, Gladys Viviana; Love, Kerry R.; Love, J. Christopher
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Background: Vaccines comprising recombinant subunit proteins are well-suited to low-cost and high-volume production for global use. The design of manufacturing processes to produce subunit vaccines depends, however, on the inherent biophysical traits presented by an individual antigen of interest. New candidate antigens typically require developing custom processes for each one and may require unique steps to ensure sufficient yields without product-related variants. Results: We describe a holistic approach for the molecular design of recombinant protein antigens—considering both their manufacturability and antigenicity—informed by bioinformatic analyses such as RNA-seq, ribosome profiling, and sequence-based prediction tools. We demonstrate this approach by engineering the product sequences of a trivalent non-replicating rotavirus vaccine (NRRV) candidate to improve titers and mitigate product variants caused by N-terminal truncation, hypermannosylation, and aggregation. The three engineered NRRV antigens retained their original antigenicity and immunogenicity, while their improved manufacturability enabled concomitant production and purification of all three serotypes in a single, end-to-end perfusion-based process using the biotechnical yeast Komagataella phaffii. Conclusions: This study demonstrates that molecular engineering of subunit antigens using advanced genomic methods can facilitate their manufacturing in continuous production. Such capabilities have potential to lower the cost and volumetric requirements in manufacturing vaccines based on recombinant protein subunits.
Fil: Dalvie, Neil C.. Massachusetts Institute of Technology; Estados Unidos
Fil: Brady, Joseph R.. Massachusetts Institute of Technology; Estados Unidos
Fil: Crowell, Laura E.. Massachusetts Institute of Technology; Estados Unidos
Fil: Tracey, Mary Kate. Massachusetts Institute of Technology; Estados Unidos
Fil: Biedermann, Andrew M.. Massachusetts Institute of Technology; Estados Unidos
Fil: Kaur, Kawaljit. University of Kansas; Estados Unidos
Fil: Hickey, John M.. University of Kansas; Estados Unidos
Fil: Kristensen, D. Lee. Massachusetts Institute of Technology; Estados Unidos
Fil: Bonnyman, Alexandra D.. Massachusetts Institute of Technology; Estados Unidos
Fil: Rodriguez Aponte, Sergio A.. Massachusetts Institute of Technology; Estados Unidos
Fil: Whittaker, Charles A.. Massachusetts Institute of Technology; Estados Unidos
Fil: Bok, Marina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Virología e Innovaciones Tecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Virología e Innovaciones Tecnológicas; Argentina
Fil: Vega, Celina Guadalupe. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Virología e Innovaciones Tecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Virología e Innovaciones Tecnológicas; Argentina
Fil: Mukhopadhyay, Tarit K.. Colegio Universitario de Londres; Reino Unido
Fil: Joshi, Sangeeta B.. University of Kansas; Estados Unidos
Fil: Volkin, David B.. University of Kansas; Estados Unidos
Fil: Parreño, Gladys Viviana. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Virología e Innovaciones Tecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Virología e Innovaciones Tecnológicas; Argentina
Fil: Love, Kerry R.. Massachusetts Institute of Technology; Estados Unidos
Fil: Love, J. Christopher. Massachusetts Institute of Technology; Estados Unidos
Materia
BIOMANUFACTURING
PICHIA PASTORIS
QUALITY BY DESIGN
SUBUNIT VACCINE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/184520

id CONICETDig_ac6539a17cd381571a23766c0cc81ce2
oai_identifier_str oai:ri.conicet.gov.ar:11336/184520
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Molecular engineering improves antigen quality and enables integrated manufacturing of a trivalent subunit vaccine candidate for rotavirusDalvie, Neil C.Brady, Joseph R.Crowell, Laura E.Tracey, Mary KateBiedermann, Andrew M.Kaur, KawaljitHickey, John M.Kristensen, D. LeeBonnyman, Alexandra D.Rodriguez Aponte, Sergio A.Whittaker, Charles A.Bok, MarinaVega, Celina GuadalupeMukhopadhyay, Tarit K.Joshi, Sangeeta B.Volkin, David B.Parreño, Gladys VivianaLove, Kerry R.Love, J. ChristopherBIOMANUFACTURINGPICHIA PASTORISQUALITY BY DESIGNSUBUNIT VACCINEhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Background: Vaccines comprising recombinant subunit proteins are well-suited to low-cost and high-volume production for global use. The design of manufacturing processes to produce subunit vaccines depends, however, on the inherent biophysical traits presented by an individual antigen of interest. New candidate antigens typically require developing custom processes for each one and may require unique steps to ensure sufficient yields without product-related variants. Results: We describe a holistic approach for the molecular design of recombinant protein antigens—considering both their manufacturability and antigenicity—informed by bioinformatic analyses such as RNA-seq, ribosome profiling, and sequence-based prediction tools. We demonstrate this approach by engineering the product sequences of a trivalent non-replicating rotavirus vaccine (NRRV) candidate to improve titers and mitigate product variants caused by N-terminal truncation, hypermannosylation, and aggregation. The three engineered NRRV antigens retained their original antigenicity and immunogenicity, while their improved manufacturability enabled concomitant production and purification of all three serotypes in a single, end-to-end perfusion-based process using the biotechnical yeast Komagataella phaffii. Conclusions: This study demonstrates that molecular engineering of subunit antigens using advanced genomic methods can facilitate their manufacturing in continuous production. Such capabilities have potential to lower the cost and volumetric requirements in manufacturing vaccines based on recombinant protein subunits.Fil: Dalvie, Neil C.. Massachusetts Institute of Technology; Estados UnidosFil: Brady, Joseph R.. Massachusetts Institute of Technology; Estados UnidosFil: Crowell, Laura E.. Massachusetts Institute of Technology; Estados UnidosFil: Tracey, Mary Kate. Massachusetts Institute of Technology; Estados UnidosFil: Biedermann, Andrew M.. Massachusetts Institute of Technology; Estados UnidosFil: Kaur, Kawaljit. University of Kansas; Estados UnidosFil: Hickey, John M.. University of Kansas; Estados UnidosFil: Kristensen, D. Lee. Massachusetts Institute of Technology; Estados UnidosFil: Bonnyman, Alexandra D.. Massachusetts Institute of Technology; Estados UnidosFil: Rodriguez Aponte, Sergio A.. Massachusetts Institute of Technology; Estados UnidosFil: Whittaker, Charles A.. Massachusetts Institute of Technology; Estados UnidosFil: Bok, Marina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Virología e Innovaciones Tecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Virología e Innovaciones Tecnológicas; ArgentinaFil: Vega, Celina Guadalupe. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Virología e Innovaciones Tecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Virología e Innovaciones Tecnológicas; ArgentinaFil: Mukhopadhyay, Tarit K.. Colegio Universitario de Londres; Reino UnidoFil: Joshi, Sangeeta B.. University of Kansas; Estados UnidosFil: Volkin, David B.. University of Kansas; Estados UnidosFil: Parreño, Gladys Viviana. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Virología e Innovaciones Tecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Virología e Innovaciones Tecnológicas; ArgentinaFil: Love, Kerry R.. Massachusetts Institute of Technology; Estados UnidosFil: Love, J. Christopher. Massachusetts Institute of Technology; Estados UnidosBioMed Central2021-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/184520Dalvie, Neil C.; Brady, Joseph R.; Crowell, Laura E.; Tracey, Mary Kate; Biedermann, Andrew M.; et al.; Molecular engineering improves antigen quality and enables integrated manufacturing of a trivalent subunit vaccine candidate for rotavirus; BioMed Central; Microbial Cell Factories; 20; 1; 12-2021; 1-141475-2859CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1186/s12934-021-01583-6info:eu-repo/semantics/altIdentifier/url/https://microbialcellfactories.biomedcentral.com/articles/10.1186/s12934-021-01583-6info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:37:20Zoai:ri.conicet.gov.ar:11336/184520instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:37:20.4CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Molecular engineering improves antigen quality and enables integrated manufacturing of a trivalent subunit vaccine candidate for rotavirus
title Molecular engineering improves antigen quality and enables integrated manufacturing of a trivalent subunit vaccine candidate for rotavirus
spellingShingle Molecular engineering improves antigen quality and enables integrated manufacturing of a trivalent subunit vaccine candidate for rotavirus
Dalvie, Neil C.
BIOMANUFACTURING
PICHIA PASTORIS
QUALITY BY DESIGN
SUBUNIT VACCINE
title_short Molecular engineering improves antigen quality and enables integrated manufacturing of a trivalent subunit vaccine candidate for rotavirus
title_full Molecular engineering improves antigen quality and enables integrated manufacturing of a trivalent subunit vaccine candidate for rotavirus
title_fullStr Molecular engineering improves antigen quality and enables integrated manufacturing of a trivalent subunit vaccine candidate for rotavirus
title_full_unstemmed Molecular engineering improves antigen quality and enables integrated manufacturing of a trivalent subunit vaccine candidate for rotavirus
title_sort Molecular engineering improves antigen quality and enables integrated manufacturing of a trivalent subunit vaccine candidate for rotavirus
dc.creator.none.fl_str_mv Dalvie, Neil C.
Brady, Joseph R.
Crowell, Laura E.
Tracey, Mary Kate
Biedermann, Andrew M.
Kaur, Kawaljit
Hickey, John M.
Kristensen, D. Lee
Bonnyman, Alexandra D.
Rodriguez Aponte, Sergio A.
Whittaker, Charles A.
Bok, Marina
Vega, Celina Guadalupe
Mukhopadhyay, Tarit K.
Joshi, Sangeeta B.
Volkin, David B.
Parreño, Gladys Viviana
Love, Kerry R.
Love, J. Christopher
author Dalvie, Neil C.
author_facet Dalvie, Neil C.
Brady, Joseph R.
Crowell, Laura E.
Tracey, Mary Kate
Biedermann, Andrew M.
Kaur, Kawaljit
Hickey, John M.
Kristensen, D. Lee
Bonnyman, Alexandra D.
Rodriguez Aponte, Sergio A.
Whittaker, Charles A.
Bok, Marina
Vega, Celina Guadalupe
Mukhopadhyay, Tarit K.
Joshi, Sangeeta B.
Volkin, David B.
Parreño, Gladys Viviana
Love, Kerry R.
Love, J. Christopher
author_role author
author2 Brady, Joseph R.
Crowell, Laura E.
Tracey, Mary Kate
Biedermann, Andrew M.
Kaur, Kawaljit
Hickey, John M.
Kristensen, D. Lee
Bonnyman, Alexandra D.
Rodriguez Aponte, Sergio A.
Whittaker, Charles A.
Bok, Marina
Vega, Celina Guadalupe
Mukhopadhyay, Tarit K.
Joshi, Sangeeta B.
Volkin, David B.
Parreño, Gladys Viviana
Love, Kerry R.
Love, J. Christopher
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv BIOMANUFACTURING
PICHIA PASTORIS
QUALITY BY DESIGN
SUBUNIT VACCINE
topic BIOMANUFACTURING
PICHIA PASTORIS
QUALITY BY DESIGN
SUBUNIT VACCINE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Background: Vaccines comprising recombinant subunit proteins are well-suited to low-cost and high-volume production for global use. The design of manufacturing processes to produce subunit vaccines depends, however, on the inherent biophysical traits presented by an individual antigen of interest. New candidate antigens typically require developing custom processes for each one and may require unique steps to ensure sufficient yields without product-related variants. Results: We describe a holistic approach for the molecular design of recombinant protein antigens—considering both their manufacturability and antigenicity—informed by bioinformatic analyses such as RNA-seq, ribosome profiling, and sequence-based prediction tools. We demonstrate this approach by engineering the product sequences of a trivalent non-replicating rotavirus vaccine (NRRV) candidate to improve titers and mitigate product variants caused by N-terminal truncation, hypermannosylation, and aggregation. The three engineered NRRV antigens retained their original antigenicity and immunogenicity, while their improved manufacturability enabled concomitant production and purification of all three serotypes in a single, end-to-end perfusion-based process using the biotechnical yeast Komagataella phaffii. Conclusions: This study demonstrates that molecular engineering of subunit antigens using advanced genomic methods can facilitate their manufacturing in continuous production. Such capabilities have potential to lower the cost and volumetric requirements in manufacturing vaccines based on recombinant protein subunits.
Fil: Dalvie, Neil C.. Massachusetts Institute of Technology; Estados Unidos
Fil: Brady, Joseph R.. Massachusetts Institute of Technology; Estados Unidos
Fil: Crowell, Laura E.. Massachusetts Institute of Technology; Estados Unidos
Fil: Tracey, Mary Kate. Massachusetts Institute of Technology; Estados Unidos
Fil: Biedermann, Andrew M.. Massachusetts Institute of Technology; Estados Unidos
Fil: Kaur, Kawaljit. University of Kansas; Estados Unidos
Fil: Hickey, John M.. University of Kansas; Estados Unidos
Fil: Kristensen, D. Lee. Massachusetts Institute of Technology; Estados Unidos
Fil: Bonnyman, Alexandra D.. Massachusetts Institute of Technology; Estados Unidos
Fil: Rodriguez Aponte, Sergio A.. Massachusetts Institute of Technology; Estados Unidos
Fil: Whittaker, Charles A.. Massachusetts Institute of Technology; Estados Unidos
Fil: Bok, Marina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Virología e Innovaciones Tecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Virología e Innovaciones Tecnológicas; Argentina
Fil: Vega, Celina Guadalupe. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Virología e Innovaciones Tecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Virología e Innovaciones Tecnológicas; Argentina
Fil: Mukhopadhyay, Tarit K.. Colegio Universitario de Londres; Reino Unido
Fil: Joshi, Sangeeta B.. University of Kansas; Estados Unidos
Fil: Volkin, David B.. University of Kansas; Estados Unidos
Fil: Parreño, Gladys Viviana. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Virología e Innovaciones Tecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Virología e Innovaciones Tecnológicas; Argentina
Fil: Love, Kerry R.. Massachusetts Institute of Technology; Estados Unidos
Fil: Love, J. Christopher. Massachusetts Institute of Technology; Estados Unidos
description Background: Vaccines comprising recombinant subunit proteins are well-suited to low-cost and high-volume production for global use. The design of manufacturing processes to produce subunit vaccines depends, however, on the inherent biophysical traits presented by an individual antigen of interest. New candidate antigens typically require developing custom processes for each one and may require unique steps to ensure sufficient yields without product-related variants. Results: We describe a holistic approach for the molecular design of recombinant protein antigens—considering both their manufacturability and antigenicity—informed by bioinformatic analyses such as RNA-seq, ribosome profiling, and sequence-based prediction tools. We demonstrate this approach by engineering the product sequences of a trivalent non-replicating rotavirus vaccine (NRRV) candidate to improve titers and mitigate product variants caused by N-terminal truncation, hypermannosylation, and aggregation. The three engineered NRRV antigens retained their original antigenicity and immunogenicity, while their improved manufacturability enabled concomitant production and purification of all three serotypes in a single, end-to-end perfusion-based process using the biotechnical yeast Komagataella phaffii. Conclusions: This study demonstrates that molecular engineering of subunit antigens using advanced genomic methods can facilitate their manufacturing in continuous production. Such capabilities have potential to lower the cost and volumetric requirements in manufacturing vaccines based on recombinant protein subunits.
publishDate 2021
dc.date.none.fl_str_mv 2021-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/184520
Dalvie, Neil C.; Brady, Joseph R.; Crowell, Laura E.; Tracey, Mary Kate; Biedermann, Andrew M.; et al.; Molecular engineering improves antigen quality and enables integrated manufacturing of a trivalent subunit vaccine candidate for rotavirus; BioMed Central; Microbial Cell Factories; 20; 1; 12-2021; 1-14
1475-2859
CONICET Digital
CONICET
url http://hdl.handle.net/11336/184520
identifier_str_mv Dalvie, Neil C.; Brady, Joseph R.; Crowell, Laura E.; Tracey, Mary Kate; Biedermann, Andrew M.; et al.; Molecular engineering improves antigen quality and enables integrated manufacturing of a trivalent subunit vaccine candidate for rotavirus; BioMed Central; Microbial Cell Factories; 20; 1; 12-2021; 1-14
1475-2859
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1186/s12934-021-01583-6
info:eu-repo/semantics/altIdentifier/url/https://microbialcellfactories.biomedcentral.com/articles/10.1186/s12934-021-01583-6
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv BioMed Central
publisher.none.fl_str_mv BioMed Central
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613176187944960
score 13.070432