Molecular engineering improves antigen quality and enables integrated manufacturing of a trivalent subunit vaccine candidate for rotavirus

Autores
Dalvie, Neil C.; Brady, Joseph R.; Crowell, Laura E.; Tracey, Mary Kate; Biedermann, Andrew M.; Kaur, Kawaljit; Hickey, John M.; Kristensen II, D. Lee; Bonnyman, Alexandra D.; Rodriguez-Aponte, Sergio A.; Whittaker, Charles A.; Bok, Marina; Vega, Celina Guadalupe; Mukhopadhyay, Tarit K.; Joshi, Sangeeta B.; Volkin, David B.; Parreño, Gladys; Love, Kerry R.; Love, J. Christopher
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Background: Vaccines comprising recombinant subunit proteins are well-suited to low-cost and high-volume production for global use. The design of manufacturing processes to produce subunit vaccines depends, however, on the inherent biophysical traits presented by an individual antigen of interest. New candidate antigens typically require developing custom processes for each one and may require unique steps to ensure sufficient yields without product-related variants. Results: We describe a holistic approach for the molecular design of recombinant protein antigens—considering both their manufacturability and antigenicity—informed by bioinformatic analyses such as RNA-seq, ribosome profiling, and sequence-based prediction tools. We demonstrate this approach by engineering the product sequences of a trivalent non-replicating rotavirus vaccine (NRRV) candidate to improve titers and mitigate product variants caused by N-terminal truncation, hypermannosylation, and aggregation. The three engineered NRRV antigens retained their original antigenicity and immunogenicity, while their improved manufacturability enabled concomitant production and purification of all three serotypes in a single, end-to-end perfusion-based process using the biotechnical yeast Komagataella phaffii. Conclusions: This study demonstrates that molecular engineering of subunit antigens using advanced genomic methods can facilitate their manufacturing in continuous production. Such capabilities have potential to lower the cost and volumetric requirements in manufacturing vaccines based on recombinant protein subunits.
Instituto de Virología
Fil: Dalvie, Neil C. Massachusetts Institute of Technology. Department of Chemical Engineering; Estados Unidos
Fil: Dalvie, Neil C. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados Unidos
Fil: Brady, Joseph R. Massachusetts Institute of Technology. Department of Chemical Engineering; Estados Unidos
Fil: Brady, Joseph R. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados Unidos
Fil: Crowell, Laura E. Massachusetts Institute of Technology. Department of Chemical Engineering; Estados Unidos
Fil: Crowell, Laura E. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados Unidos
Fil: Tracey, Mary Kate. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados Unidos
Fil: Biedermann, Andrew M. Massachusetts Institute of Technology. Department of Chemical Engineering; Estados Unidos
Fil: Biedermann, Andrew M. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados Unidos
Fil: Kaur, Kawaljit. University of Kansas. Vaccine Analytics and Formulation Center. Department of Pharmaceutical Chemistry; Estados Unidos
Fil: Hickey, John M. University of Kansas. Vaccine Analytics and Formulation Center. Department of Pharmaceutical Chemistry; Estados Unidos
Fil: Kristensen II, D. Lee. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados Unidos
Fil: Bonnyman, Alexandra D. Massachusetts Institute of Technology. Department of Chemical Engineering; Estados Unidos
Fil: Bonnyman, Alexandra D. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados Unidos
Fil: Rodriguez-Aponte, Sergio A. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados Unidos
Fil: Rodriguez-Aponte, Sergio A. Massachusetts Institute of Technology. Department of Biological Engineering; Estados Unidos
Fil: Whittaker, Charles A. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados Unidos
Fil: Bok, Marina. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Virología; Argentina
Fil: Bok, Marina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Vega, Celina Guadalupe. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Virología; Argentina
Fil: Vega, Celina Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Mukhopadhyay, Tarit K. University College London. Department of Biochemical Engineering; Reino Unidos
Fil: Joshi, Sangeeta B. University of Kansas. Vaccine Analytics and Formulation Center. Department of Pharmaceutical Chemistry; Estados Unidos
Fil: Volkin, David B. University of Kansas. Vaccine Analytics and Formulation Center. Department of Pharmaceutical Chemistry; Estados Unidos
Fil: Parreño, Gladys Viviana. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Virología; Argentina
Fil: Parreño, Gladys Viviana. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Love, Kerry R. Massachusetts Institute of Technology. Department of Chemical Engineering; Estados Unidos
Fil: Love, Kerry R. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados Unidos
Fil: Love, J. Christopher. Massachusetts Institute of Technology. Department of Chemical Engineering; Estados Unidos
Fil: Love, J. Christopher. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados Unidos
Fuente
Microbial Cell Factories 20 : Article number: 94 (2021)
Materia
Vacuna
Antígenos
Genética Molecular
Pichia pastoris
Vaccines
Rotavirus
Antigens
Molecular Genetics
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/10760

id INTADig_e78d3d6ba118ab7b445e51e80507694d
oai_identifier_str oai:localhost:20.500.12123/10760
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling Molecular engineering improves antigen quality and enables integrated manufacturing of a trivalent subunit vaccine candidate for rotavirusDalvie, Neil C.Brady, Joseph R.Crowell, Laura E.Tracey, Mary KateBiedermann, Andrew M.Kaur, KawaljitHickey, John M.Kristensen II, D. LeeBonnyman, Alexandra D.Rodriguez-Aponte, Sergio A.Whittaker, Charles A.Bok, MarinaVega, Celina GuadalupeMukhopadhyay, Tarit K.Joshi, Sangeeta B.Volkin, David B.Parreño, GladysLove, Kerry R.Love, J. ChristopherVacunaAntígenosGenética MolecularPichia pastorisVaccinesRotavirusAntigensMolecular GeneticsBackground: Vaccines comprising recombinant subunit proteins are well-suited to low-cost and high-volume production for global use. The design of manufacturing processes to produce subunit vaccines depends, however, on the inherent biophysical traits presented by an individual antigen of interest. New candidate antigens typically require developing custom processes for each one and may require unique steps to ensure sufficient yields without product-related variants. Results: We describe a holistic approach for the molecular design of recombinant protein antigens—considering both their manufacturability and antigenicity—informed by bioinformatic analyses such as RNA-seq, ribosome profiling, and sequence-based prediction tools. We demonstrate this approach by engineering the product sequences of a trivalent non-replicating rotavirus vaccine (NRRV) candidate to improve titers and mitigate product variants caused by N-terminal truncation, hypermannosylation, and aggregation. The three engineered NRRV antigens retained their original antigenicity and immunogenicity, while their improved manufacturability enabled concomitant production and purification of all three serotypes in a single, end-to-end perfusion-based process using the biotechnical yeast Komagataella phaffii. Conclusions: This study demonstrates that molecular engineering of subunit antigens using advanced genomic methods can facilitate their manufacturing in continuous production. Such capabilities have potential to lower the cost and volumetric requirements in manufacturing vaccines based on recombinant protein subunits.Instituto de VirologíaFil: Dalvie, Neil C. Massachusetts Institute of Technology. Department of Chemical Engineering; Estados UnidosFil: Dalvie, Neil C. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados UnidosFil: Brady, Joseph R. Massachusetts Institute of Technology. Department of Chemical Engineering; Estados UnidosFil: Brady, Joseph R. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados UnidosFil: Crowell, Laura E. Massachusetts Institute of Technology. Department of Chemical Engineering; Estados UnidosFil: Crowell, Laura E. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados UnidosFil: Tracey, Mary Kate. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados UnidosFil: Biedermann, Andrew M. Massachusetts Institute of Technology. Department of Chemical Engineering; Estados UnidosFil: Biedermann, Andrew M. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados UnidosFil: Kaur, Kawaljit. University of Kansas. Vaccine Analytics and Formulation Center. Department of Pharmaceutical Chemistry; Estados UnidosFil: Hickey, John M. University of Kansas. Vaccine Analytics and Formulation Center. Department of Pharmaceutical Chemistry; Estados UnidosFil: Kristensen II, D. Lee. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados UnidosFil: Bonnyman, Alexandra D. Massachusetts Institute of Technology. Department of Chemical Engineering; Estados UnidosFil: Bonnyman, Alexandra D. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados UnidosFil: Rodriguez-Aponte, Sergio A. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados UnidosFil: Rodriguez-Aponte, Sergio A. Massachusetts Institute of Technology. Department of Biological Engineering; Estados UnidosFil: Whittaker, Charles A. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados UnidosFil: Bok, Marina. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Virología; ArgentinaFil: Bok, Marina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Vega, Celina Guadalupe. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Virología; ArgentinaFil: Vega, Celina Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Mukhopadhyay, Tarit K. University College London. Department of Biochemical Engineering; Reino UnidosFil: Joshi, Sangeeta B. University of Kansas. Vaccine Analytics and Formulation Center. Department of Pharmaceutical Chemistry; Estados UnidosFil: Volkin, David B. University of Kansas. Vaccine Analytics and Formulation Center. Department of Pharmaceutical Chemistry; Estados UnidosFil: Parreño, Gladys Viviana. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Virología; ArgentinaFil: Parreño, Gladys Viviana. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Love, Kerry R. Massachusetts Institute of Technology. Department of Chemical Engineering; Estados UnidosFil: Love, Kerry R. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados UnidosFil: Love, J. Christopher. Massachusetts Institute of Technology. Department of Chemical Engineering; Estados UnidosFil: Love, J. Christopher. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados UnidosBMC2021-11-12T13:55:22Z2021-11-12T13:55:22Z2021-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/10760https://microbialcellfactories.biomedcentral.com/articles/10.1186/s12934-021-01583-61475-2859https://doi.org/10.1186/s12934-021-01583-6Microbial Cell Factories 20 : Article number: 94 (2021)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-29T13:45:24Zoai:localhost:20.500.12123/10760instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:45:24.945INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv Molecular engineering improves antigen quality and enables integrated manufacturing of a trivalent subunit vaccine candidate for rotavirus
title Molecular engineering improves antigen quality and enables integrated manufacturing of a trivalent subunit vaccine candidate for rotavirus
spellingShingle Molecular engineering improves antigen quality and enables integrated manufacturing of a trivalent subunit vaccine candidate for rotavirus
Dalvie, Neil C.
Vacuna
Antígenos
Genética Molecular
Pichia pastoris
Vaccines
Rotavirus
Antigens
Molecular Genetics
title_short Molecular engineering improves antigen quality and enables integrated manufacturing of a trivalent subunit vaccine candidate for rotavirus
title_full Molecular engineering improves antigen quality and enables integrated manufacturing of a trivalent subunit vaccine candidate for rotavirus
title_fullStr Molecular engineering improves antigen quality and enables integrated manufacturing of a trivalent subunit vaccine candidate for rotavirus
title_full_unstemmed Molecular engineering improves antigen quality and enables integrated manufacturing of a trivalent subunit vaccine candidate for rotavirus
title_sort Molecular engineering improves antigen quality and enables integrated manufacturing of a trivalent subunit vaccine candidate for rotavirus
dc.creator.none.fl_str_mv Dalvie, Neil C.
Brady, Joseph R.
Crowell, Laura E.
Tracey, Mary Kate
Biedermann, Andrew M.
Kaur, Kawaljit
Hickey, John M.
Kristensen II, D. Lee
Bonnyman, Alexandra D.
Rodriguez-Aponte, Sergio A.
Whittaker, Charles A.
Bok, Marina
Vega, Celina Guadalupe
Mukhopadhyay, Tarit K.
Joshi, Sangeeta B.
Volkin, David B.
Parreño, Gladys
Love, Kerry R.
Love, J. Christopher
author Dalvie, Neil C.
author_facet Dalvie, Neil C.
Brady, Joseph R.
Crowell, Laura E.
Tracey, Mary Kate
Biedermann, Andrew M.
Kaur, Kawaljit
Hickey, John M.
Kristensen II, D. Lee
Bonnyman, Alexandra D.
Rodriguez-Aponte, Sergio A.
Whittaker, Charles A.
Bok, Marina
Vega, Celina Guadalupe
Mukhopadhyay, Tarit K.
Joshi, Sangeeta B.
Volkin, David B.
Parreño, Gladys
Love, Kerry R.
Love, J. Christopher
author_role author
author2 Brady, Joseph R.
Crowell, Laura E.
Tracey, Mary Kate
Biedermann, Andrew M.
Kaur, Kawaljit
Hickey, John M.
Kristensen II, D. Lee
Bonnyman, Alexandra D.
Rodriguez-Aponte, Sergio A.
Whittaker, Charles A.
Bok, Marina
Vega, Celina Guadalupe
Mukhopadhyay, Tarit K.
Joshi, Sangeeta B.
Volkin, David B.
Parreño, Gladys
Love, Kerry R.
Love, J. Christopher
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Vacuna
Antígenos
Genética Molecular
Pichia pastoris
Vaccines
Rotavirus
Antigens
Molecular Genetics
topic Vacuna
Antígenos
Genética Molecular
Pichia pastoris
Vaccines
Rotavirus
Antigens
Molecular Genetics
dc.description.none.fl_txt_mv Background: Vaccines comprising recombinant subunit proteins are well-suited to low-cost and high-volume production for global use. The design of manufacturing processes to produce subunit vaccines depends, however, on the inherent biophysical traits presented by an individual antigen of interest. New candidate antigens typically require developing custom processes for each one and may require unique steps to ensure sufficient yields without product-related variants. Results: We describe a holistic approach for the molecular design of recombinant protein antigens—considering both their manufacturability and antigenicity—informed by bioinformatic analyses such as RNA-seq, ribosome profiling, and sequence-based prediction tools. We demonstrate this approach by engineering the product sequences of a trivalent non-replicating rotavirus vaccine (NRRV) candidate to improve titers and mitigate product variants caused by N-terminal truncation, hypermannosylation, and aggregation. The three engineered NRRV antigens retained their original antigenicity and immunogenicity, while their improved manufacturability enabled concomitant production and purification of all three serotypes in a single, end-to-end perfusion-based process using the biotechnical yeast Komagataella phaffii. Conclusions: This study demonstrates that molecular engineering of subunit antigens using advanced genomic methods can facilitate their manufacturing in continuous production. Such capabilities have potential to lower the cost and volumetric requirements in manufacturing vaccines based on recombinant protein subunits.
Instituto de Virología
Fil: Dalvie, Neil C. Massachusetts Institute of Technology. Department of Chemical Engineering; Estados Unidos
Fil: Dalvie, Neil C. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados Unidos
Fil: Brady, Joseph R. Massachusetts Institute of Technology. Department of Chemical Engineering; Estados Unidos
Fil: Brady, Joseph R. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados Unidos
Fil: Crowell, Laura E. Massachusetts Institute of Technology. Department of Chemical Engineering; Estados Unidos
Fil: Crowell, Laura E. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados Unidos
Fil: Tracey, Mary Kate. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados Unidos
Fil: Biedermann, Andrew M. Massachusetts Institute of Technology. Department of Chemical Engineering; Estados Unidos
Fil: Biedermann, Andrew M. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados Unidos
Fil: Kaur, Kawaljit. University of Kansas. Vaccine Analytics and Formulation Center. Department of Pharmaceutical Chemistry; Estados Unidos
Fil: Hickey, John M. University of Kansas. Vaccine Analytics and Formulation Center. Department of Pharmaceutical Chemistry; Estados Unidos
Fil: Kristensen II, D. Lee. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados Unidos
Fil: Bonnyman, Alexandra D. Massachusetts Institute of Technology. Department of Chemical Engineering; Estados Unidos
Fil: Bonnyman, Alexandra D. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados Unidos
Fil: Rodriguez-Aponte, Sergio A. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados Unidos
Fil: Rodriguez-Aponte, Sergio A. Massachusetts Institute of Technology. Department of Biological Engineering; Estados Unidos
Fil: Whittaker, Charles A. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados Unidos
Fil: Bok, Marina. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Virología; Argentina
Fil: Bok, Marina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Vega, Celina Guadalupe. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Virología; Argentina
Fil: Vega, Celina Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Mukhopadhyay, Tarit K. University College London. Department of Biochemical Engineering; Reino Unidos
Fil: Joshi, Sangeeta B. University of Kansas. Vaccine Analytics and Formulation Center. Department of Pharmaceutical Chemistry; Estados Unidos
Fil: Volkin, David B. University of Kansas. Vaccine Analytics and Formulation Center. Department of Pharmaceutical Chemistry; Estados Unidos
Fil: Parreño, Gladys Viviana. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Virología; Argentina
Fil: Parreño, Gladys Viviana. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Love, Kerry R. Massachusetts Institute of Technology. Department of Chemical Engineering; Estados Unidos
Fil: Love, Kerry R. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados Unidos
Fil: Love, J. Christopher. Massachusetts Institute of Technology. Department of Chemical Engineering; Estados Unidos
Fil: Love, J. Christopher. Massachusetts Institute of Technology. The Koch Institute for Integrative Cancer Research; Estados Unidos
description Background: Vaccines comprising recombinant subunit proteins are well-suited to low-cost and high-volume production for global use. The design of manufacturing processes to produce subunit vaccines depends, however, on the inherent biophysical traits presented by an individual antigen of interest. New candidate antigens typically require developing custom processes for each one and may require unique steps to ensure sufficient yields without product-related variants. Results: We describe a holistic approach for the molecular design of recombinant protein antigens—considering both their manufacturability and antigenicity—informed by bioinformatic analyses such as RNA-seq, ribosome profiling, and sequence-based prediction tools. We demonstrate this approach by engineering the product sequences of a trivalent non-replicating rotavirus vaccine (NRRV) candidate to improve titers and mitigate product variants caused by N-terminal truncation, hypermannosylation, and aggregation. The three engineered NRRV antigens retained their original antigenicity and immunogenicity, while their improved manufacturability enabled concomitant production and purification of all three serotypes in a single, end-to-end perfusion-based process using the biotechnical yeast Komagataella phaffii. Conclusions: This study demonstrates that molecular engineering of subunit antigens using advanced genomic methods can facilitate their manufacturing in continuous production. Such capabilities have potential to lower the cost and volumetric requirements in manufacturing vaccines based on recombinant protein subunits.
publishDate 2021
dc.date.none.fl_str_mv 2021-11-12T13:55:22Z
2021-11-12T13:55:22Z
2021-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12123/10760
https://microbialcellfactories.biomedcentral.com/articles/10.1186/s12934-021-01583-6
1475-2859
https://doi.org/10.1186/s12934-021-01583-6
url http://hdl.handle.net/20.500.12123/10760
https://microbialcellfactories.biomedcentral.com/articles/10.1186/s12934-021-01583-6
https://doi.org/10.1186/s12934-021-01583-6
identifier_str_mv 1475-2859
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv BMC
publisher.none.fl_str_mv BMC
dc.source.none.fl_str_mv Microbial Cell Factories 20 : Article number: 94 (2021)
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1844619159717019648
score 12.559606