Stabilization of low-order cross-grid PkQl mixed finite elements
- Autores
- Armentano, Maria Gabriela
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we analyze a low-order family of mixed finite element methods for the numerical solution of the Stokes problem and a second order elliptic problem, in two space dimensions. In these schemes, the pressure is interpolated on a mesh of rectangular elements, while the velocity is approximated on a triangular mesh obtained by dividing each rectangle into four triangles by its diagonals. For the lowest order P1Q0, a global spurious pressure mode is shown to exist and so this element, as P1Q1 case analyzed in Armentano and Blasco (2010), is unstable. However, following the ideas given in Bochev et al. (2006), a simple stabilization procedure can be applied, when we approximate the solution of the Stokes problem, such that the new P1Q0 and P1Q1 methods are unconditionally stable, and achieve optimal accuracy with respect to solution regularity with simple and straightforward implementations. Moreover, we analyze the application of our P1Q1 element to the mixed formulation of the elliptic problem. In this case, by introducing the modified mixed weak form proposed in Brezzi et al. (1993), optimal order of accuracy can be obtained with our stabilized P1Q1 elements. Numerical results are also presented, which confirm the existence of the spurious pressure mode for the P1Q0 element and the excellent stability and accuracy of the new stabilized methods.
Fil: Armentano, Maria Gabriela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
CROSS-GRID ELEMENTS
ELLIPTIC PROBLEMS
MIXED FINITE ELEMENTS
STABILITY ANALYSIS
STOKES PROBLEM - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/88670
Ver los metadatos del registro completo
id |
CONICETDig_abec9f2cbfc0232707ea6bfd10c4e55c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/88670 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Stabilization of low-order cross-grid PkQl mixed finite elementsArmentano, Maria GabrielaCROSS-GRID ELEMENTSELLIPTIC PROBLEMSMIXED FINITE ELEMENTSSTABILITY ANALYSISSTOKES PROBLEMhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we analyze a low-order family of mixed finite element methods for the numerical solution of the Stokes problem and a second order elliptic problem, in two space dimensions. In these schemes, the pressure is interpolated on a mesh of rectangular elements, while the velocity is approximated on a triangular mesh obtained by dividing each rectangle into four triangles by its diagonals. For the lowest order P1Q0, a global spurious pressure mode is shown to exist and so this element, as P1Q1 case analyzed in Armentano and Blasco (2010), is unstable. However, following the ideas given in Bochev et al. (2006), a simple stabilization procedure can be applied, when we approximate the solution of the Stokes problem, such that the new P1Q0 and P1Q1 methods are unconditionally stable, and achieve optimal accuracy with respect to solution regularity with simple and straightforward implementations. Moreover, we analyze the application of our P1Q1 element to the mixed formulation of the elliptic problem. In this case, by introducing the modified mixed weak form proposed in Brezzi et al. (1993), optimal order of accuracy can be obtained with our stabilized P1Q1 elements. Numerical results are also presented, which confirm the existence of the spurious pressure mode for the P1Q0 element and the excellent stability and accuracy of the new stabilized methods.Fil: Armentano, Maria Gabriela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaElsevier Science2018-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/88670Armentano, Maria Gabriela; Stabilization of low-order cross-grid PkQl mixed finite elements; Elsevier Science; Journal Of Computational And Applied Mathematics; 330; 3-2018; 340-3550377-0427CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0377042717304193info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cam.2017.09.002info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:14:06Zoai:ri.conicet.gov.ar:11336/88670instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:14:06.308CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Stabilization of low-order cross-grid PkQl mixed finite elements |
title |
Stabilization of low-order cross-grid PkQl mixed finite elements |
spellingShingle |
Stabilization of low-order cross-grid PkQl mixed finite elements Armentano, Maria Gabriela CROSS-GRID ELEMENTS ELLIPTIC PROBLEMS MIXED FINITE ELEMENTS STABILITY ANALYSIS STOKES PROBLEM |
title_short |
Stabilization of low-order cross-grid PkQl mixed finite elements |
title_full |
Stabilization of low-order cross-grid PkQl mixed finite elements |
title_fullStr |
Stabilization of low-order cross-grid PkQl mixed finite elements |
title_full_unstemmed |
Stabilization of low-order cross-grid PkQl mixed finite elements |
title_sort |
Stabilization of low-order cross-grid PkQl mixed finite elements |
dc.creator.none.fl_str_mv |
Armentano, Maria Gabriela |
author |
Armentano, Maria Gabriela |
author_facet |
Armentano, Maria Gabriela |
author_role |
author |
dc.subject.none.fl_str_mv |
CROSS-GRID ELEMENTS ELLIPTIC PROBLEMS MIXED FINITE ELEMENTS STABILITY ANALYSIS STOKES PROBLEM |
topic |
CROSS-GRID ELEMENTS ELLIPTIC PROBLEMS MIXED FINITE ELEMENTS STABILITY ANALYSIS STOKES PROBLEM |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper we analyze a low-order family of mixed finite element methods for the numerical solution of the Stokes problem and a second order elliptic problem, in two space dimensions. In these schemes, the pressure is interpolated on a mesh of rectangular elements, while the velocity is approximated on a triangular mesh obtained by dividing each rectangle into four triangles by its diagonals. For the lowest order P1Q0, a global spurious pressure mode is shown to exist and so this element, as P1Q1 case analyzed in Armentano and Blasco (2010), is unstable. However, following the ideas given in Bochev et al. (2006), a simple stabilization procedure can be applied, when we approximate the solution of the Stokes problem, such that the new P1Q0 and P1Q1 methods are unconditionally stable, and achieve optimal accuracy with respect to solution regularity with simple and straightforward implementations. Moreover, we analyze the application of our P1Q1 element to the mixed formulation of the elliptic problem. In this case, by introducing the modified mixed weak form proposed in Brezzi et al. (1993), optimal order of accuracy can be obtained with our stabilized P1Q1 elements. Numerical results are also presented, which confirm the existence of the spurious pressure mode for the P1Q0 element and the excellent stability and accuracy of the new stabilized methods. Fil: Armentano, Maria Gabriela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
In this paper we analyze a low-order family of mixed finite element methods for the numerical solution of the Stokes problem and a second order elliptic problem, in two space dimensions. In these schemes, the pressure is interpolated on a mesh of rectangular elements, while the velocity is approximated on a triangular mesh obtained by dividing each rectangle into four triangles by its diagonals. For the lowest order P1Q0, a global spurious pressure mode is shown to exist and so this element, as P1Q1 case analyzed in Armentano and Blasco (2010), is unstable. However, following the ideas given in Bochev et al. (2006), a simple stabilization procedure can be applied, when we approximate the solution of the Stokes problem, such that the new P1Q0 and P1Q1 methods are unconditionally stable, and achieve optimal accuracy with respect to solution regularity with simple and straightforward implementations. Moreover, we analyze the application of our P1Q1 element to the mixed formulation of the elliptic problem. In this case, by introducing the modified mixed weak form proposed in Brezzi et al. (1993), optimal order of accuracy can be obtained with our stabilized P1Q1 elements. Numerical results are also presented, which confirm the existence of the spurious pressure mode for the P1Q0 element and the excellent stability and accuracy of the new stabilized methods. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/88670 Armentano, Maria Gabriela; Stabilization of low-order cross-grid PkQl mixed finite elements; Elsevier Science; Journal Of Computational And Applied Mathematics; 330; 3-2018; 340-355 0377-0427 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/88670 |
identifier_str_mv |
Armentano, Maria Gabriela; Stabilization of low-order cross-grid PkQl mixed finite elements; Elsevier Science; Journal Of Computational And Applied Mathematics; 330; 3-2018; 340-355 0377-0427 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0377042717304193 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cam.2017.09.002 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/zip application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614064562503680 |
score |
13.070432 |