Stable and unstable cross-grid Pk Ql mixed finite elements for the Stokes problem

Autores
Armentano, M.G.; Blasco, J.
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we develop and analyze a family of mixed finite element methods for the numerical solution of the Stokes problem in two space dimensions. In these schemes, the pressure is interpolated on a mesh of rectangular elements, while the velocity is approximated on a triangular mesh obtained by dividing each rectangle into four triangles by its diagonals. Continuous interpolations of degrees k for the velocity and l for the pressure are considered, so the new finite elements are called cross-grid Pk Ql. A stability analysis of these approximations is provided, based on the macroelement technique of Stenberg. The lowest order P1 Q1 and P2 Q1 cases are analyzed in detail; in the first case, a global spurious pressure mode is shown to exist, so this element is unstable. In the second case, however, stability is rigorously proved. Numerical results obtained in these two cases are also presented, which confirm the existence of the spurious pressure mode for the P1 Q1 element and the stability of the P2 Q1 element. © 2010 Elsevier B.V. All rights reserved.
Fil:Armentano, M.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
J. Comput. Appl. Math. 2010;234(5):1404-1416
Materia
Cross-grid
Macroelement technique
Mixed finite elements
Stability analysis
Stokes problem
A-stability
Finite Element
Macro element
Mixed finite element methods
Mixed finite elements
Numerical results
Numerical solution
Pressure modes
Stability analysis
Stokes problem
Triangular meshes
Two space dimensions
Numerical methods
Stability
Finite element method
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_03770427_v234_n5_p1404_Armentano

id BDUBAFCEN_476923a32e547217cf7cdf98fa1489ae
oai_identifier_str paperaa:paper_03770427_v234_n5_p1404_Armentano
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Stable and unstable cross-grid Pk Ql mixed finite elements for the Stokes problemArmentano, M.G.Blasco, J.Cross-gridMacroelement techniqueMixed finite elementsStability analysisStokes problemA-stabilityFinite ElementMacro elementMixed finite element methodsMixed finite elementsNumerical resultsNumerical solutionPressure modesStability analysisStokes problemTriangular meshesTwo space dimensionsNumerical methodsStabilityFinite element methodIn this paper we develop and analyze a family of mixed finite element methods for the numerical solution of the Stokes problem in two space dimensions. In these schemes, the pressure is interpolated on a mesh of rectangular elements, while the velocity is approximated on a triangular mesh obtained by dividing each rectangle into four triangles by its diagonals. Continuous interpolations of degrees k for the velocity and l for the pressure are considered, so the new finite elements are called cross-grid Pk Ql. A stability analysis of these approximations is provided, based on the macroelement technique of Stenberg. The lowest order P1 Q1 and P2 Q1 cases are analyzed in detail; in the first case, a global spurious pressure mode is shown to exist, so this element is unstable. In the second case, however, stability is rigorously proved. Numerical results obtained in these two cases are also presented, which confirm the existence of the spurious pressure mode for the P1 Q1 element and the stability of the P2 Q1 element. © 2010 Elsevier B.V. All rights reserved.Fil:Armentano, M.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2010info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_03770427_v234_n5_p1404_ArmentanoJ. Comput. Appl. Math. 2010;234(5):1404-1416reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:42:54Zpaperaa:paper_03770427_v234_n5_p1404_ArmentanoInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:42:55.703Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Stable and unstable cross-grid Pk Ql mixed finite elements for the Stokes problem
title Stable and unstable cross-grid Pk Ql mixed finite elements for the Stokes problem
spellingShingle Stable and unstable cross-grid Pk Ql mixed finite elements for the Stokes problem
Armentano, M.G.
Cross-grid
Macroelement technique
Mixed finite elements
Stability analysis
Stokes problem
A-stability
Finite Element
Macro element
Mixed finite element methods
Mixed finite elements
Numerical results
Numerical solution
Pressure modes
Stability analysis
Stokes problem
Triangular meshes
Two space dimensions
Numerical methods
Stability
Finite element method
title_short Stable and unstable cross-grid Pk Ql mixed finite elements for the Stokes problem
title_full Stable and unstable cross-grid Pk Ql mixed finite elements for the Stokes problem
title_fullStr Stable and unstable cross-grid Pk Ql mixed finite elements for the Stokes problem
title_full_unstemmed Stable and unstable cross-grid Pk Ql mixed finite elements for the Stokes problem
title_sort Stable and unstable cross-grid Pk Ql mixed finite elements for the Stokes problem
dc.creator.none.fl_str_mv Armentano, M.G.
Blasco, J.
author Armentano, M.G.
author_facet Armentano, M.G.
Blasco, J.
author_role author
author2 Blasco, J.
author2_role author
dc.subject.none.fl_str_mv Cross-grid
Macroelement technique
Mixed finite elements
Stability analysis
Stokes problem
A-stability
Finite Element
Macro element
Mixed finite element methods
Mixed finite elements
Numerical results
Numerical solution
Pressure modes
Stability analysis
Stokes problem
Triangular meshes
Two space dimensions
Numerical methods
Stability
Finite element method
topic Cross-grid
Macroelement technique
Mixed finite elements
Stability analysis
Stokes problem
A-stability
Finite Element
Macro element
Mixed finite element methods
Mixed finite elements
Numerical results
Numerical solution
Pressure modes
Stability analysis
Stokes problem
Triangular meshes
Two space dimensions
Numerical methods
Stability
Finite element method
dc.description.none.fl_txt_mv In this paper we develop and analyze a family of mixed finite element methods for the numerical solution of the Stokes problem in two space dimensions. In these schemes, the pressure is interpolated on a mesh of rectangular elements, while the velocity is approximated on a triangular mesh obtained by dividing each rectangle into four triangles by its diagonals. Continuous interpolations of degrees k for the velocity and l for the pressure are considered, so the new finite elements are called cross-grid Pk Ql. A stability analysis of these approximations is provided, based on the macroelement technique of Stenberg. The lowest order P1 Q1 and P2 Q1 cases are analyzed in detail; in the first case, a global spurious pressure mode is shown to exist, so this element is unstable. In the second case, however, stability is rigorously proved. Numerical results obtained in these two cases are also presented, which confirm the existence of the spurious pressure mode for the P1 Q1 element and the stability of the P2 Q1 element. © 2010 Elsevier B.V. All rights reserved.
Fil:Armentano, M.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description In this paper we develop and analyze a family of mixed finite element methods for the numerical solution of the Stokes problem in two space dimensions. In these schemes, the pressure is interpolated on a mesh of rectangular elements, while the velocity is approximated on a triangular mesh obtained by dividing each rectangle into four triangles by its diagonals. Continuous interpolations of degrees k for the velocity and l for the pressure are considered, so the new finite elements are called cross-grid Pk Ql. A stability analysis of these approximations is provided, based on the macroelement technique of Stenberg. The lowest order P1 Q1 and P2 Q1 cases are analyzed in detail; in the first case, a global spurious pressure mode is shown to exist, so this element is unstable. In the second case, however, stability is rigorously proved. Numerical results obtained in these two cases are also presented, which confirm the existence of the spurious pressure mode for the P1 Q1 element and the stability of the P2 Q1 element. © 2010 Elsevier B.V. All rights reserved.
publishDate 2010
dc.date.none.fl_str_mv 2010
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_03770427_v234_n5_p1404_Armentano
url http://hdl.handle.net/20.500.12110/paper_03770427_v234_n5_p1404_Armentano
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv J. Comput. Appl. Math. 2010;234(5):1404-1416
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618734562443264
score 13.070432