Estimación del consumo en rumiantes en pastoreo utilizando redes neuronales artificiales

Autores
Uhrig, Mariela Noelia; Galli, Julio Ricardo; Rufiner, Hugo Leonardo; Milone, Diego Humberto
Año de publicación
2018
Idioma
español castellano
Tipo de recurso
artículo
Estado
versión publicada
Descripción
edir con precisión y rapidez el consumo de forrajeenrumiantes es importante para la gestión eficiente del rodeo y los recursos alimenticios, así como para la salud y bienestar animal en los sistemas de producción. Eluso de algoritmos de procesamiento inteligente de señales que extraiganinformación relevante de los sonidos que emiten losrumiantes es una opción prometedorapara predecir el consumo de rumiantes en condicionesde pastoreo. En este trabajo se aplican perceptrones multicapa y máquinas de aprendizaje extremo como modelos de regresión no lineales multivariadapara la estimación del consumo. Los resultados muestran que éstastécnicasde regresión no lineal para pueden reducir significativamente el error de estimación delacantidad demateria seca consumida porrumiantes.
Accurate and rapid measurement of forage intake in ruminants is important for efficient management livestock and forage resources, as well as for animal health and welfare in production systems. The use of intelligent signal processing algorithms to extract relevant information from the sound emitted by ruminants is a promising method to predict the intake of ruminants in grazing conditions. In this work, multilayer perceptrons and extreme learning machines, are used as non-linear multivariate regression models to predict intake. The results show that these non-linear regression techniques can significantly reduce the error in the estimation of forage intake in ruminants.
Fil: Uhrig, Mariela Noelia. Provincia de Entre Ríos. Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción. Universidad Autónoma de Entre Ríos. Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Galli, Julio Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Investigaciones en Ciencias Agrarias de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Instituto de Investigaciones en Ciencias Agrarias de Rosario; Argentina
Fil: Rufiner, Hugo Leonardo. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Departamento de Informática. Laboratorio de Investigaciones en Señales e Inteligencia Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina. Universidad Nacional de Entre Ríos; Argentina
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Materia
Redesneuronales Artificiales
Comportamiento Ingestivo en Rumiantes
Regresiónno Lineal
Máquinas de Aprendizaje Extremo
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/80149

id CONICETDig_aa636b1f16b740e480b457ed5ee31144
oai_identifier_str oai:ri.conicet.gov.ar:11336/80149
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Estimación del consumo en rumiantes en pastoreo utilizando redes neuronales artificialesUhrig, Mariela NoeliaGalli, Julio RicardoRufiner, Hugo LeonardoMilone, Diego HumbertoRedesneuronales ArtificialesComportamiento Ingestivo en RumiantesRegresiónno LinealMáquinas de Aprendizaje Extremohttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1edir con precisión y rapidez el consumo de forrajeenrumiantes es importante para la gestión eficiente del rodeo y los recursos alimenticios, así como para la salud y bienestar animal en los sistemas de producción. Eluso de algoritmos de procesamiento inteligente de señales que extraiganinformación relevante de los sonidos que emiten losrumiantes es una opción prometedorapara predecir el consumo de rumiantes en condicionesde pastoreo. En este trabajo se aplican perceptrones multicapa y máquinas de aprendizaje extremo como modelos de regresión no lineales multivariadapara la estimación del consumo. Los resultados muestran que éstastécnicasde regresión no lineal para pueden reducir significativamente el error de estimación delacantidad demateria seca consumida porrumiantes.Accurate and rapid measurement of forage intake in ruminants is important for efficient management livestock and forage resources, as well as for animal health and welfare in production systems. The use of intelligent signal processing algorithms to extract relevant information from the sound emitted by ruminants is a promising method to predict the intake of ruminants in grazing conditions. In this work, multilayer perceptrons and extreme learning machines, are used as non-linear multivariate regression models to predict intake. The results show that these non-linear regression techniques can significantly reduce the error in the estimation of forage intake in ruminants.Fil: Uhrig, Mariela Noelia. Provincia de Entre Ríos. Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción. Universidad Autónoma de Entre Ríos. Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Galli, Julio Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Investigaciones en Ciencias Agrarias de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Instituto de Investigaciones en Ciencias Agrarias de Rosario; ArgentinaFil: Rufiner, Hugo Leonardo. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Departamento de Informática. Laboratorio de Investigaciones en Señales e Inteligencia Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina. Universidad Nacional de Entre Ríos; ArgentinaFil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaSociedade Educacional Três de Maio2018-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/80149Uhrig, Mariela Noelia; Galli, Julio Ricardo; Rufiner, Hugo Leonardo; Milone, Diego Humberto; Estimación del consumo en rumiantes en pastoreo utilizando redes neuronales artificiales; Sociedade Educacional Três de Maio; Revista Eletrônica Argentina-Brasil de Tecnologias da Informação e da Comunicação; 1; 8; 4-2018; 1-122446-7634CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/doi/10.5281/zenodo.1228473info:eu-repo/semantics/altIdentifier/url/https://revistas.setrem.com.br/index.php/reabtic/article/view/296info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:44:16Zoai:ri.conicet.gov.ar:11336/80149instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:44:16.521CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Estimación del consumo en rumiantes en pastoreo utilizando redes neuronales artificiales
title Estimación del consumo en rumiantes en pastoreo utilizando redes neuronales artificiales
spellingShingle Estimación del consumo en rumiantes en pastoreo utilizando redes neuronales artificiales
Uhrig, Mariela Noelia
Redesneuronales Artificiales
Comportamiento Ingestivo en Rumiantes
Regresiónno Lineal
Máquinas de Aprendizaje Extremo
title_short Estimación del consumo en rumiantes en pastoreo utilizando redes neuronales artificiales
title_full Estimación del consumo en rumiantes en pastoreo utilizando redes neuronales artificiales
title_fullStr Estimación del consumo en rumiantes en pastoreo utilizando redes neuronales artificiales
title_full_unstemmed Estimación del consumo en rumiantes en pastoreo utilizando redes neuronales artificiales
title_sort Estimación del consumo en rumiantes en pastoreo utilizando redes neuronales artificiales
dc.creator.none.fl_str_mv Uhrig, Mariela Noelia
Galli, Julio Ricardo
Rufiner, Hugo Leonardo
Milone, Diego Humberto
author Uhrig, Mariela Noelia
author_facet Uhrig, Mariela Noelia
Galli, Julio Ricardo
Rufiner, Hugo Leonardo
Milone, Diego Humberto
author_role author
author2 Galli, Julio Ricardo
Rufiner, Hugo Leonardo
Milone, Diego Humberto
author2_role author
author
author
dc.subject.none.fl_str_mv Redesneuronales Artificiales
Comportamiento Ingestivo en Rumiantes
Regresiónno Lineal
Máquinas de Aprendizaje Extremo
topic Redesneuronales Artificiales
Comportamiento Ingestivo en Rumiantes
Regresiónno Lineal
Máquinas de Aprendizaje Extremo
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv edir con precisión y rapidez el consumo de forrajeenrumiantes es importante para la gestión eficiente del rodeo y los recursos alimenticios, así como para la salud y bienestar animal en los sistemas de producción. Eluso de algoritmos de procesamiento inteligente de señales que extraiganinformación relevante de los sonidos que emiten losrumiantes es una opción prometedorapara predecir el consumo de rumiantes en condicionesde pastoreo. En este trabajo se aplican perceptrones multicapa y máquinas de aprendizaje extremo como modelos de regresión no lineales multivariadapara la estimación del consumo. Los resultados muestran que éstastécnicasde regresión no lineal para pueden reducir significativamente el error de estimación delacantidad demateria seca consumida porrumiantes.
Accurate and rapid measurement of forage intake in ruminants is important for efficient management livestock and forage resources, as well as for animal health and welfare in production systems. The use of intelligent signal processing algorithms to extract relevant information from the sound emitted by ruminants is a promising method to predict the intake of ruminants in grazing conditions. In this work, multilayer perceptrons and extreme learning machines, are used as non-linear multivariate regression models to predict intake. The results show that these non-linear regression techniques can significantly reduce the error in the estimation of forage intake in ruminants.
Fil: Uhrig, Mariela Noelia. Provincia de Entre Ríos. Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción. Universidad Autónoma de Entre Ríos. Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Galli, Julio Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Investigaciones en Ciencias Agrarias de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Instituto de Investigaciones en Ciencias Agrarias de Rosario; Argentina
Fil: Rufiner, Hugo Leonardo. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Departamento de Informática. Laboratorio de Investigaciones en Señales e Inteligencia Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina. Universidad Nacional de Entre Ríos; Argentina
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
description edir con precisión y rapidez el consumo de forrajeenrumiantes es importante para la gestión eficiente del rodeo y los recursos alimenticios, así como para la salud y bienestar animal en los sistemas de producción. Eluso de algoritmos de procesamiento inteligente de señales que extraiganinformación relevante de los sonidos que emiten losrumiantes es una opción prometedorapara predecir el consumo de rumiantes en condicionesde pastoreo. En este trabajo se aplican perceptrones multicapa y máquinas de aprendizaje extremo como modelos de regresión no lineales multivariadapara la estimación del consumo. Los resultados muestran que éstastécnicasde regresión no lineal para pueden reducir significativamente el error de estimación delacantidad demateria seca consumida porrumiantes.
publishDate 2018
dc.date.none.fl_str_mv 2018-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/80149
Uhrig, Mariela Noelia; Galli, Julio Ricardo; Rufiner, Hugo Leonardo; Milone, Diego Humberto; Estimación del consumo en rumiantes en pastoreo utilizando redes neuronales artificiales; Sociedade Educacional Três de Maio; Revista Eletrônica Argentina-Brasil de Tecnologias da Informação e da Comunicação; 1; 8; 4-2018; 1-12
2446-7634
CONICET Digital
CONICET
url http://hdl.handle.net/11336/80149
identifier_str_mv Uhrig, Mariela Noelia; Galli, Julio Ricardo; Rufiner, Hugo Leonardo; Milone, Diego Humberto; Estimación del consumo en rumiantes en pastoreo utilizando redes neuronales artificiales; Sociedade Educacional Três de Maio; Revista Eletrônica Argentina-Brasil de Tecnologias da Informação e da Comunicação; 1; 8; 4-2018; 1-12
2446-7634
CONICET Digital
CONICET
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.5281/zenodo.1228473
info:eu-repo/semantics/altIdentifier/url/https://revistas.setrem.com.br/index.php/reabtic/article/view/296
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Sociedade Educacional Três de Maio
publisher.none.fl_str_mv Sociedade Educacional Três de Maio
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614480106881024
score 13.070432