Estimación del consumo en rumiantes en pastoreo utilizando redes neuronales artificiales
- Autores
- Uhrig, Mariela Noelia; Galli, Julio Ricardo; Rufiner, Hugo Leonardo; Milone, Diego Humberto
- Año de publicación
- 2018
- Idioma
- español castellano
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- edir con precisión y rapidez el consumo de forrajeenrumiantes es importante para la gestión eficiente del rodeo y los recursos alimenticios, así como para la salud y bienestar animal en los sistemas de producción. Eluso de algoritmos de procesamiento inteligente de señales que extraiganinformación relevante de los sonidos que emiten losrumiantes es una opción prometedorapara predecir el consumo de rumiantes en condicionesde pastoreo. En este trabajo se aplican perceptrones multicapa y máquinas de aprendizaje extremo como modelos de regresión no lineales multivariadapara la estimación del consumo. Los resultados muestran que éstastécnicasde regresión no lineal para pueden reducir significativamente el error de estimación delacantidad demateria seca consumida porrumiantes.
Accurate and rapid measurement of forage intake in ruminants is important for efficient management livestock and forage resources, as well as for animal health and welfare in production systems. The use of intelligent signal processing algorithms to extract relevant information from the sound emitted by ruminants is a promising method to predict the intake of ruminants in grazing conditions. In this work, multilayer perceptrons and extreme learning machines, are used as non-linear multivariate regression models to predict intake. The results show that these non-linear regression techniques can significantly reduce the error in the estimation of forage intake in ruminants.
Fil: Uhrig, Mariela Noelia. Provincia de Entre Ríos. Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción. Universidad Autónoma de Entre Ríos. Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Galli, Julio Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Investigaciones en Ciencias Agrarias de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Instituto de Investigaciones en Ciencias Agrarias de Rosario; Argentina
Fil: Rufiner, Hugo Leonardo. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Departamento de Informática. Laboratorio de Investigaciones en Señales e Inteligencia Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina. Universidad Nacional de Entre Ríos; Argentina
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina - Materia
-
Redesneuronales Artificiales
Comportamiento Ingestivo en Rumiantes
Regresiónno Lineal
Máquinas de Aprendizaje Extremo - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/80149
Ver los metadatos del registro completo
id |
CONICETDig_aa636b1f16b740e480b457ed5ee31144 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/80149 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Estimación del consumo en rumiantes en pastoreo utilizando redes neuronales artificialesUhrig, Mariela NoeliaGalli, Julio RicardoRufiner, Hugo LeonardoMilone, Diego HumbertoRedesneuronales ArtificialesComportamiento Ingestivo en RumiantesRegresiónno LinealMáquinas de Aprendizaje Extremohttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1edir con precisión y rapidez el consumo de forrajeenrumiantes es importante para la gestión eficiente del rodeo y los recursos alimenticios, así como para la salud y bienestar animal en los sistemas de producción. Eluso de algoritmos de procesamiento inteligente de señales que extraiganinformación relevante de los sonidos que emiten losrumiantes es una opción prometedorapara predecir el consumo de rumiantes en condicionesde pastoreo. En este trabajo se aplican perceptrones multicapa y máquinas de aprendizaje extremo como modelos de regresión no lineales multivariadapara la estimación del consumo. Los resultados muestran que éstastécnicasde regresión no lineal para pueden reducir significativamente el error de estimación delacantidad demateria seca consumida porrumiantes.Accurate and rapid measurement of forage intake in ruminants is important for efficient management livestock and forage resources, as well as for animal health and welfare in production systems. The use of intelligent signal processing algorithms to extract relevant information from the sound emitted by ruminants is a promising method to predict the intake of ruminants in grazing conditions. In this work, multilayer perceptrons and extreme learning machines, are used as non-linear multivariate regression models to predict intake. The results show that these non-linear regression techniques can significantly reduce the error in the estimation of forage intake in ruminants.Fil: Uhrig, Mariela Noelia. Provincia de Entre Ríos. Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción. Universidad Autónoma de Entre Ríos. Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Galli, Julio Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Investigaciones en Ciencias Agrarias de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Instituto de Investigaciones en Ciencias Agrarias de Rosario; ArgentinaFil: Rufiner, Hugo Leonardo. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Departamento de Informática. Laboratorio de Investigaciones en Señales e Inteligencia Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina. Universidad Nacional de Entre Ríos; ArgentinaFil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaSociedade Educacional Três de Maio2018-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/80149Uhrig, Mariela Noelia; Galli, Julio Ricardo; Rufiner, Hugo Leonardo; Milone, Diego Humberto; Estimación del consumo en rumiantes en pastoreo utilizando redes neuronales artificiales; Sociedade Educacional Três de Maio; Revista Eletrônica Argentina-Brasil de Tecnologias da Informação e da Comunicação; 1; 8; 4-2018; 1-122446-7634CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/doi/10.5281/zenodo.1228473info:eu-repo/semantics/altIdentifier/url/https://revistas.setrem.com.br/index.php/reabtic/article/view/296info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:44:16Zoai:ri.conicet.gov.ar:11336/80149instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:44:16.521CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Estimación del consumo en rumiantes en pastoreo utilizando redes neuronales artificiales |
title |
Estimación del consumo en rumiantes en pastoreo utilizando redes neuronales artificiales |
spellingShingle |
Estimación del consumo en rumiantes en pastoreo utilizando redes neuronales artificiales Uhrig, Mariela Noelia Redesneuronales Artificiales Comportamiento Ingestivo en Rumiantes Regresiónno Lineal Máquinas de Aprendizaje Extremo |
title_short |
Estimación del consumo en rumiantes en pastoreo utilizando redes neuronales artificiales |
title_full |
Estimación del consumo en rumiantes en pastoreo utilizando redes neuronales artificiales |
title_fullStr |
Estimación del consumo en rumiantes en pastoreo utilizando redes neuronales artificiales |
title_full_unstemmed |
Estimación del consumo en rumiantes en pastoreo utilizando redes neuronales artificiales |
title_sort |
Estimación del consumo en rumiantes en pastoreo utilizando redes neuronales artificiales |
dc.creator.none.fl_str_mv |
Uhrig, Mariela Noelia Galli, Julio Ricardo Rufiner, Hugo Leonardo Milone, Diego Humberto |
author |
Uhrig, Mariela Noelia |
author_facet |
Uhrig, Mariela Noelia Galli, Julio Ricardo Rufiner, Hugo Leonardo Milone, Diego Humberto |
author_role |
author |
author2 |
Galli, Julio Ricardo Rufiner, Hugo Leonardo Milone, Diego Humberto |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Redesneuronales Artificiales Comportamiento Ingestivo en Rumiantes Regresiónno Lineal Máquinas de Aprendizaje Extremo |
topic |
Redesneuronales Artificiales Comportamiento Ingestivo en Rumiantes Regresiónno Lineal Máquinas de Aprendizaje Extremo |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
edir con precisión y rapidez el consumo de forrajeenrumiantes es importante para la gestión eficiente del rodeo y los recursos alimenticios, así como para la salud y bienestar animal en los sistemas de producción. Eluso de algoritmos de procesamiento inteligente de señales que extraiganinformación relevante de los sonidos que emiten losrumiantes es una opción prometedorapara predecir el consumo de rumiantes en condicionesde pastoreo. En este trabajo se aplican perceptrones multicapa y máquinas de aprendizaje extremo como modelos de regresión no lineales multivariadapara la estimación del consumo. Los resultados muestran que éstastécnicasde regresión no lineal para pueden reducir significativamente el error de estimación delacantidad demateria seca consumida porrumiantes. Accurate and rapid measurement of forage intake in ruminants is important for efficient management livestock and forage resources, as well as for animal health and welfare in production systems. The use of intelligent signal processing algorithms to extract relevant information from the sound emitted by ruminants is a promising method to predict the intake of ruminants in grazing conditions. In this work, multilayer perceptrons and extreme learning machines, are used as non-linear multivariate regression models to predict intake. The results show that these non-linear regression techniques can significantly reduce the error in the estimation of forage intake in ruminants. Fil: Uhrig, Mariela Noelia. Provincia de Entre Ríos. Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción. Universidad Autónoma de Entre Ríos. Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina Fil: Galli, Julio Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Investigaciones en Ciencias Agrarias de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Instituto de Investigaciones en Ciencias Agrarias de Rosario; Argentina Fil: Rufiner, Hugo Leonardo. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Departamento de Informática. Laboratorio de Investigaciones en Señales e Inteligencia Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina. Universidad Nacional de Entre Ríos; Argentina Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina |
description |
edir con precisión y rapidez el consumo de forrajeenrumiantes es importante para la gestión eficiente del rodeo y los recursos alimenticios, así como para la salud y bienestar animal en los sistemas de producción. Eluso de algoritmos de procesamiento inteligente de señales que extraiganinformación relevante de los sonidos que emiten losrumiantes es una opción prometedorapara predecir el consumo de rumiantes en condicionesde pastoreo. En este trabajo se aplican perceptrones multicapa y máquinas de aprendizaje extremo como modelos de regresión no lineales multivariadapara la estimación del consumo. Los resultados muestran que éstastécnicasde regresión no lineal para pueden reducir significativamente el error de estimación delacantidad demateria seca consumida porrumiantes. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/80149 Uhrig, Mariela Noelia; Galli, Julio Ricardo; Rufiner, Hugo Leonardo; Milone, Diego Humberto; Estimación del consumo en rumiantes en pastoreo utilizando redes neuronales artificiales; Sociedade Educacional Três de Maio; Revista Eletrônica Argentina-Brasil de Tecnologias da Informação e da Comunicação; 1; 8; 4-2018; 1-12 2446-7634 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/80149 |
identifier_str_mv |
Uhrig, Mariela Noelia; Galli, Julio Ricardo; Rufiner, Hugo Leonardo; Milone, Diego Humberto; Estimación del consumo en rumiantes en pastoreo utilizando redes neuronales artificiales; Sociedade Educacional Três de Maio; Revista Eletrônica Argentina-Brasil de Tecnologias da Informação e da Comunicação; 1; 8; 4-2018; 1-12 2446-7634 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.5281/zenodo.1228473 info:eu-repo/semantics/altIdentifier/url/https://revistas.setrem.com.br/index.php/reabtic/article/view/296 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Sociedade Educacional Três de Maio |
publisher.none.fl_str_mv |
Sociedade Educacional Três de Maio |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614480106881024 |
score |
13.070432 |