Netmhcpan-4.0: Improved peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data

Autores
Jurtz, Vanessa; Paul, Sinu; Andreatta, Massimo; Marcatili, Paolo; Peters, Bjoern; Nielsen, Morten
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Cytotoxic T cells are of central importance in the immune system's response to disease. They recognize defective cells by binding to peptides presented on the cell surface by MHC class I molecules. Peptide binding to MHC molecules is the single most selective step in the Ag-presentation pathway. Therefore, in the quest for T cell epitopes, the prediction of peptide binding to MHC molecules has attracted widespread attention. In the past, predictors of peptide-MHC interactions have primarily been trained on binding affinity data. Recently, an increasing number of MHC-presented peptides identified by mass spectrometry have been reported containing information about peptide-processing steps in the presentation pathway and the length distribution of naturally presented peptides. In this article, we present NetMHCpan-4.0, a method trained on binding affinity and eluted ligand data leveraging the information from both data types. Large-scale benchmarking of the method demonstrates an increase in predictive performance compared with state-of-the-art methods when it comes to identification of naturally processed ligands, cancer neoantigens, and T cell epitopes.
Fil: Jurtz, Vanessa. Technical University of Denmark; Dinamarca
Fil: Paul, Sinu. La Jolla Institute for Allergy and Immunology; Estados Unidos
Fil: Andreatta, Massimo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina
Fil: Marcatili, Paolo. Technical University of Denmark; Dinamarca
Fil: Peters, Bjoern. La Jolla Institute for Allergy and Immunology; Estados Unidos
Fil: Nielsen, Morten. Technical University of Denmark; Dinamarca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina
Materia
Mhc
Ligands
Epitopes
Machine Learning
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/48622

id CONICETDig_a9ae452079015daad449a527ff62057f
oai_identifier_str oai:ri.conicet.gov.ar:11336/48622
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Netmhcpan-4.0: Improved peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity dataJurtz, VanessaPaul, SinuAndreatta, MassimoMarcatili, PaoloPeters, BjoernNielsen, MortenMhcLigandsEpitopesMachine Learninghttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Cytotoxic T cells are of central importance in the immune system's response to disease. They recognize defective cells by binding to peptides presented on the cell surface by MHC class I molecules. Peptide binding to MHC molecules is the single most selective step in the Ag-presentation pathway. Therefore, in the quest for T cell epitopes, the prediction of peptide binding to MHC molecules has attracted widespread attention. In the past, predictors of peptide-MHC interactions have primarily been trained on binding affinity data. Recently, an increasing number of MHC-presented peptides identified by mass spectrometry have been reported containing information about peptide-processing steps in the presentation pathway and the length distribution of naturally presented peptides. In this article, we present NetMHCpan-4.0, a method trained on binding affinity and eluted ligand data leveraging the information from both data types. Large-scale benchmarking of the method demonstrates an increase in predictive performance compared with state-of-the-art methods when it comes to identification of naturally processed ligands, cancer neoantigens, and T cell epitopes.Fil: Jurtz, Vanessa. Technical University of Denmark; DinamarcaFil: Paul, Sinu. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Andreatta, Massimo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Marcatili, Paolo. Technical University of Denmark; DinamarcaFil: Peters, Bjoern. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Nielsen, Morten. Technical University of Denmark; Dinamarca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaAmerican Association of Immunologists2017-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/48622Jurtz, Vanessa; Paul, Sinu; Andreatta, Massimo; Marcatili, Paolo; Peters, Bjoern; et al.; Netmhcpan-4.0: Improved peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data; American Association of Immunologists; Journal of Immunology; 199; 9; 11-2017; 3360-33680022-1767CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.4049/jimmunol.1700893info:eu-repo/semantics/altIdentifier/url/http://www.jimmunol.org/content/199/9/3360info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:25:00Zoai:ri.conicet.gov.ar:11336/48622instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:25:01.018CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Netmhcpan-4.0: Improved peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data
title Netmhcpan-4.0: Improved peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data
spellingShingle Netmhcpan-4.0: Improved peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data
Jurtz, Vanessa
Mhc
Ligands
Epitopes
Machine Learning
title_short Netmhcpan-4.0: Improved peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data
title_full Netmhcpan-4.0: Improved peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data
title_fullStr Netmhcpan-4.0: Improved peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data
title_full_unstemmed Netmhcpan-4.0: Improved peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data
title_sort Netmhcpan-4.0: Improved peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data
dc.creator.none.fl_str_mv Jurtz, Vanessa
Paul, Sinu
Andreatta, Massimo
Marcatili, Paolo
Peters, Bjoern
Nielsen, Morten
author Jurtz, Vanessa
author_facet Jurtz, Vanessa
Paul, Sinu
Andreatta, Massimo
Marcatili, Paolo
Peters, Bjoern
Nielsen, Morten
author_role author
author2 Paul, Sinu
Andreatta, Massimo
Marcatili, Paolo
Peters, Bjoern
Nielsen, Morten
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Mhc
Ligands
Epitopes
Machine Learning
topic Mhc
Ligands
Epitopes
Machine Learning
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Cytotoxic T cells are of central importance in the immune system's response to disease. They recognize defective cells by binding to peptides presented on the cell surface by MHC class I molecules. Peptide binding to MHC molecules is the single most selective step in the Ag-presentation pathway. Therefore, in the quest for T cell epitopes, the prediction of peptide binding to MHC molecules has attracted widespread attention. In the past, predictors of peptide-MHC interactions have primarily been trained on binding affinity data. Recently, an increasing number of MHC-presented peptides identified by mass spectrometry have been reported containing information about peptide-processing steps in the presentation pathway and the length distribution of naturally presented peptides. In this article, we present NetMHCpan-4.0, a method trained on binding affinity and eluted ligand data leveraging the information from both data types. Large-scale benchmarking of the method demonstrates an increase in predictive performance compared with state-of-the-art methods when it comes to identification of naturally processed ligands, cancer neoantigens, and T cell epitopes.
Fil: Jurtz, Vanessa. Technical University of Denmark; Dinamarca
Fil: Paul, Sinu. La Jolla Institute for Allergy and Immunology; Estados Unidos
Fil: Andreatta, Massimo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina
Fil: Marcatili, Paolo. Technical University of Denmark; Dinamarca
Fil: Peters, Bjoern. La Jolla Institute for Allergy and Immunology; Estados Unidos
Fil: Nielsen, Morten. Technical University of Denmark; Dinamarca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina
description Cytotoxic T cells are of central importance in the immune system's response to disease. They recognize defective cells by binding to peptides presented on the cell surface by MHC class I molecules. Peptide binding to MHC molecules is the single most selective step in the Ag-presentation pathway. Therefore, in the quest for T cell epitopes, the prediction of peptide binding to MHC molecules has attracted widespread attention. In the past, predictors of peptide-MHC interactions have primarily been trained on binding affinity data. Recently, an increasing number of MHC-presented peptides identified by mass spectrometry have been reported containing information about peptide-processing steps in the presentation pathway and the length distribution of naturally presented peptides. In this article, we present NetMHCpan-4.0, a method trained on binding affinity and eluted ligand data leveraging the information from both data types. Large-scale benchmarking of the method demonstrates an increase in predictive performance compared with state-of-the-art methods when it comes to identification of naturally processed ligands, cancer neoantigens, and T cell epitopes.
publishDate 2017
dc.date.none.fl_str_mv 2017-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/48622
Jurtz, Vanessa; Paul, Sinu; Andreatta, Massimo; Marcatili, Paolo; Peters, Bjoern; et al.; Netmhcpan-4.0: Improved peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data; American Association of Immunologists; Journal of Immunology; 199; 9; 11-2017; 3360-3368
0022-1767
CONICET Digital
CONICET
url http://hdl.handle.net/11336/48622
identifier_str_mv Jurtz, Vanessa; Paul, Sinu; Andreatta, Massimo; Marcatili, Paolo; Peters, Bjoern; et al.; Netmhcpan-4.0: Improved peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data; American Association of Immunologists; Journal of Immunology; 199; 9; 11-2017; 3360-3368
0022-1767
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.4049/jimmunol.1700893
info:eu-repo/semantics/altIdentifier/url/http://www.jimmunol.org/content/199/9/3360
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Association of Immunologists
publisher.none.fl_str_mv American Association of Immunologists
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082679024386048
score 13.22299