Netmhcpan-4.0: Improved peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data
- Autores
- Jurtz, Vanessa; Paul, Sinu; Andreatta, Massimo; Marcatili, Paolo; Peters, Bjoern; Nielsen, Morten
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Cytotoxic T cells are of central importance in the immune system's response to disease. They recognize defective cells by binding to peptides presented on the cell surface by MHC class I molecules. Peptide binding to MHC molecules is the single most selective step in the Ag-presentation pathway. Therefore, in the quest for T cell epitopes, the prediction of peptide binding to MHC molecules has attracted widespread attention. In the past, predictors of peptide-MHC interactions have primarily been trained on binding affinity data. Recently, an increasing number of MHC-presented peptides identified by mass spectrometry have been reported containing information about peptide-processing steps in the presentation pathway and the length distribution of naturally presented peptides. In this article, we present NetMHCpan-4.0, a method trained on binding affinity and eluted ligand data leveraging the information from both data types. Large-scale benchmarking of the method demonstrates an increase in predictive performance compared with state-of-the-art methods when it comes to identification of naturally processed ligands, cancer neoantigens, and T cell epitopes.
Fil: Jurtz, Vanessa. Technical University of Denmark; Dinamarca
Fil: Paul, Sinu. La Jolla Institute for Allergy and Immunology; Estados Unidos
Fil: Andreatta, Massimo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina
Fil: Marcatili, Paolo. Technical University of Denmark; Dinamarca
Fil: Peters, Bjoern. La Jolla Institute for Allergy and Immunology; Estados Unidos
Fil: Nielsen, Morten. Technical University of Denmark; Dinamarca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina - Materia
-
Mhc
Ligands
Epitopes
Machine Learning - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/48622
Ver los metadatos del registro completo
id |
CONICETDig_a9ae452079015daad449a527ff62057f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/48622 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Netmhcpan-4.0: Improved peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity dataJurtz, VanessaPaul, SinuAndreatta, MassimoMarcatili, PaoloPeters, BjoernNielsen, MortenMhcLigandsEpitopesMachine Learninghttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Cytotoxic T cells are of central importance in the immune system's response to disease. They recognize defective cells by binding to peptides presented on the cell surface by MHC class I molecules. Peptide binding to MHC molecules is the single most selective step in the Ag-presentation pathway. Therefore, in the quest for T cell epitopes, the prediction of peptide binding to MHC molecules has attracted widespread attention. In the past, predictors of peptide-MHC interactions have primarily been trained on binding affinity data. Recently, an increasing number of MHC-presented peptides identified by mass spectrometry have been reported containing information about peptide-processing steps in the presentation pathway and the length distribution of naturally presented peptides. In this article, we present NetMHCpan-4.0, a method trained on binding affinity and eluted ligand data leveraging the information from both data types. Large-scale benchmarking of the method demonstrates an increase in predictive performance compared with state-of-the-art methods when it comes to identification of naturally processed ligands, cancer neoantigens, and T cell epitopes.Fil: Jurtz, Vanessa. Technical University of Denmark; DinamarcaFil: Paul, Sinu. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Andreatta, Massimo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Marcatili, Paolo. Technical University of Denmark; DinamarcaFil: Peters, Bjoern. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Nielsen, Morten. Technical University of Denmark; Dinamarca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaAmerican Association of Immunologists2017-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/48622Jurtz, Vanessa; Paul, Sinu; Andreatta, Massimo; Marcatili, Paolo; Peters, Bjoern; et al.; Netmhcpan-4.0: Improved peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data; American Association of Immunologists; Journal of Immunology; 199; 9; 11-2017; 3360-33680022-1767CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.4049/jimmunol.1700893info:eu-repo/semantics/altIdentifier/url/http://www.jimmunol.org/content/199/9/3360info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:25:00Zoai:ri.conicet.gov.ar:11336/48622instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:25:01.018CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Netmhcpan-4.0: Improved peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data |
title |
Netmhcpan-4.0: Improved peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data |
spellingShingle |
Netmhcpan-4.0: Improved peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data Jurtz, Vanessa Mhc Ligands Epitopes Machine Learning |
title_short |
Netmhcpan-4.0: Improved peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data |
title_full |
Netmhcpan-4.0: Improved peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data |
title_fullStr |
Netmhcpan-4.0: Improved peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data |
title_full_unstemmed |
Netmhcpan-4.0: Improved peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data |
title_sort |
Netmhcpan-4.0: Improved peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data |
dc.creator.none.fl_str_mv |
Jurtz, Vanessa Paul, Sinu Andreatta, Massimo Marcatili, Paolo Peters, Bjoern Nielsen, Morten |
author |
Jurtz, Vanessa |
author_facet |
Jurtz, Vanessa Paul, Sinu Andreatta, Massimo Marcatili, Paolo Peters, Bjoern Nielsen, Morten |
author_role |
author |
author2 |
Paul, Sinu Andreatta, Massimo Marcatili, Paolo Peters, Bjoern Nielsen, Morten |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Mhc Ligands Epitopes Machine Learning |
topic |
Mhc Ligands Epitopes Machine Learning |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Cytotoxic T cells are of central importance in the immune system's response to disease. They recognize defective cells by binding to peptides presented on the cell surface by MHC class I molecules. Peptide binding to MHC molecules is the single most selective step in the Ag-presentation pathway. Therefore, in the quest for T cell epitopes, the prediction of peptide binding to MHC molecules has attracted widespread attention. In the past, predictors of peptide-MHC interactions have primarily been trained on binding affinity data. Recently, an increasing number of MHC-presented peptides identified by mass spectrometry have been reported containing information about peptide-processing steps in the presentation pathway and the length distribution of naturally presented peptides. In this article, we present NetMHCpan-4.0, a method trained on binding affinity and eluted ligand data leveraging the information from both data types. Large-scale benchmarking of the method demonstrates an increase in predictive performance compared with state-of-the-art methods when it comes to identification of naturally processed ligands, cancer neoantigens, and T cell epitopes. Fil: Jurtz, Vanessa. Technical University of Denmark; Dinamarca Fil: Paul, Sinu. La Jolla Institute for Allergy and Immunology; Estados Unidos Fil: Andreatta, Massimo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina Fil: Marcatili, Paolo. Technical University of Denmark; Dinamarca Fil: Peters, Bjoern. La Jolla Institute for Allergy and Immunology; Estados Unidos Fil: Nielsen, Morten. Technical University of Denmark; Dinamarca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina |
description |
Cytotoxic T cells are of central importance in the immune system's response to disease. They recognize defective cells by binding to peptides presented on the cell surface by MHC class I molecules. Peptide binding to MHC molecules is the single most selective step in the Ag-presentation pathway. Therefore, in the quest for T cell epitopes, the prediction of peptide binding to MHC molecules has attracted widespread attention. In the past, predictors of peptide-MHC interactions have primarily been trained on binding affinity data. Recently, an increasing number of MHC-presented peptides identified by mass spectrometry have been reported containing information about peptide-processing steps in the presentation pathway and the length distribution of naturally presented peptides. In this article, we present NetMHCpan-4.0, a method trained on binding affinity and eluted ligand data leveraging the information from both data types. Large-scale benchmarking of the method demonstrates an increase in predictive performance compared with state-of-the-art methods when it comes to identification of naturally processed ligands, cancer neoantigens, and T cell epitopes. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/48622 Jurtz, Vanessa; Paul, Sinu; Andreatta, Massimo; Marcatili, Paolo; Peters, Bjoern; et al.; Netmhcpan-4.0: Improved peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data; American Association of Immunologists; Journal of Immunology; 199; 9; 11-2017; 3360-3368 0022-1767 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/48622 |
identifier_str_mv |
Jurtz, Vanessa; Paul, Sinu; Andreatta, Massimo; Marcatili, Paolo; Peters, Bjoern; et al.; Netmhcpan-4.0: Improved peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data; American Association of Immunologists; Journal of Immunology; 199; 9; 11-2017; 3360-3368 0022-1767 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.4049/jimmunol.1700893 info:eu-repo/semantics/altIdentifier/url/http://www.jimmunol.org/content/199/9/3360 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Association of Immunologists |
publisher.none.fl_str_mv |
American Association of Immunologists |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082679024386048 |
score |
13.22299 |