Improved methods for predicting peptide binding affinity to MHC class II molecules
- Autores
- Jensen, Kamilla Kjærgaard; Andreatta, Massimo; Marcatili, Paolo; Buus, Søren; Greenbaum, Jason A.; Yan, Zhen; Sette, Alessandro; Peters, Bjoern; Nielsen, Morten
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Major histocompatibility complex class II (MHC-II) molecules are expressed on the surface of professional antigen-presenting cells where they display peptides to T helper cells, which orchestrate the onset and outcome of many host immune responses. Understanding which peptides will be presented by the MHC-II molecule is therefore important for understanding the activation of T helper cells and can be used to identify T-cell epitopes. We here present updated versions of two MHC–II–peptide binding affinity prediction methods, NetMHCII and NetMHCIIpan. These were constructed using an extended data set of quantitative MHC–peptide binding affinity data obtained from the Immune Epitope Database covering HLA-DR, HLA-DQ, HLA-DP and H-2 mouse molecules. We show that training with this extended data set improved the performance for peptide binding predictions for both methods. Both methods are publicly available at www.cbs.dtu.dk/services/NetMHCII-2.3 and www.cbs.dtu.dk/services/NetMHCIIpan-3.2.
Fil: Jensen, Kamilla Kjærgaard. Technical University of Denmark; Dinamarca
Fil: Andreatta, Massimo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina
Fil: Marcatili, Paolo. Technical University of Denmark; Dinamarca
Fil: Buus, Søren. University of Copenhagen; Dinamarca
Fil: Greenbaum, Jason A.. La Jolla Institute for Allergy and Immunology; Estados Unidos
Fil: Yan, Zhen. La Jolla Institute for Allergy and Immunology; Estados Unidos
Fil: Sette, Alessandro. University of California at San Diego; Estados Unidos. La Jolla Institute for Allergy and Immunology; Estados Unidos
Fil: Peters, Bjoern. University of California at San Diego; Estados Unidos. La Jolla Institute for Allergy and Immunology; Estados Unidos
Fil: Nielsen, Morten. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina. Technical University of Denmark; Dinamarca - Materia
-
AFFINITY PREDICTIONS
IMMUNOGENIC PEPTIDES
MHC BINDING SPECIFICITY
PEPTIDE-MHC BINDING
T-CELL EPITOPE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/96635
Ver los metadatos del registro completo
id |
CONICETDig_2fcd563a463af8d431acc07807e23037 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/96635 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Improved methods for predicting peptide binding affinity to MHC class II moleculesJensen, Kamilla KjærgaardAndreatta, MassimoMarcatili, PaoloBuus, SørenGreenbaum, Jason A.Yan, ZhenSette, AlessandroPeters, BjoernNielsen, MortenAFFINITY PREDICTIONSIMMUNOGENIC PEPTIDESMHC BINDING SPECIFICITYPEPTIDE-MHC BINDINGT-CELL EPITOPEhttps://purl.org/becyt/ford/3.3https://purl.org/becyt/ford/3Major histocompatibility complex class II (MHC-II) molecules are expressed on the surface of professional antigen-presenting cells where they display peptides to T helper cells, which orchestrate the onset and outcome of many host immune responses. Understanding which peptides will be presented by the MHC-II molecule is therefore important for understanding the activation of T helper cells and can be used to identify T-cell epitopes. We here present updated versions of two MHC–II–peptide binding affinity prediction methods, NetMHCII and NetMHCIIpan. These were constructed using an extended data set of quantitative MHC–peptide binding affinity data obtained from the Immune Epitope Database covering HLA-DR, HLA-DQ, HLA-DP and H-2 mouse molecules. We show that training with this extended data set improved the performance for peptide binding predictions for both methods. Both methods are publicly available at www.cbs.dtu.dk/services/NetMHCII-2.3 and www.cbs.dtu.dk/services/NetMHCIIpan-3.2.Fil: Jensen, Kamilla Kjærgaard. Technical University of Denmark; DinamarcaFil: Andreatta, Massimo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Marcatili, Paolo. Technical University of Denmark; DinamarcaFil: Buus, Søren. University of Copenhagen; DinamarcaFil: Greenbaum, Jason A.. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Yan, Zhen. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Sette, Alessandro. University of California at San Diego; Estados Unidos. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Peters, Bjoern. University of California at San Diego; Estados Unidos. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Nielsen, Morten. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina. Technical University of Denmark; DinamarcaWiley Blackwell Publishing, Inc2018-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/96635Jensen, Kamilla Kjærgaard; Andreatta, Massimo; Marcatili, Paolo; Buus, Søren; Greenbaum, Jason A.; et al.; Improved methods for predicting peptide binding affinity to MHC class II molecules; Wiley Blackwell Publishing, Inc; Immunology; 154; 3; 7-2018; 394-4060019-2805CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://doi.wiley.com/10.1111/imm.12889info:eu-repo/semantics/altIdentifier/doi/10.1111/imm.12889info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:44:54Zoai:ri.conicet.gov.ar:11336/96635instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:44:54.289CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Improved methods for predicting peptide binding affinity to MHC class II molecules |
title |
Improved methods for predicting peptide binding affinity to MHC class II molecules |
spellingShingle |
Improved methods for predicting peptide binding affinity to MHC class II molecules Jensen, Kamilla Kjærgaard AFFINITY PREDICTIONS IMMUNOGENIC PEPTIDES MHC BINDING SPECIFICITY PEPTIDE-MHC BINDING T-CELL EPITOPE |
title_short |
Improved methods for predicting peptide binding affinity to MHC class II molecules |
title_full |
Improved methods for predicting peptide binding affinity to MHC class II molecules |
title_fullStr |
Improved methods for predicting peptide binding affinity to MHC class II molecules |
title_full_unstemmed |
Improved methods for predicting peptide binding affinity to MHC class II molecules |
title_sort |
Improved methods for predicting peptide binding affinity to MHC class II molecules |
dc.creator.none.fl_str_mv |
Jensen, Kamilla Kjærgaard Andreatta, Massimo Marcatili, Paolo Buus, Søren Greenbaum, Jason A. Yan, Zhen Sette, Alessandro Peters, Bjoern Nielsen, Morten |
author |
Jensen, Kamilla Kjærgaard |
author_facet |
Jensen, Kamilla Kjærgaard Andreatta, Massimo Marcatili, Paolo Buus, Søren Greenbaum, Jason A. Yan, Zhen Sette, Alessandro Peters, Bjoern Nielsen, Morten |
author_role |
author |
author2 |
Andreatta, Massimo Marcatili, Paolo Buus, Søren Greenbaum, Jason A. Yan, Zhen Sette, Alessandro Peters, Bjoern Nielsen, Morten |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
AFFINITY PREDICTIONS IMMUNOGENIC PEPTIDES MHC BINDING SPECIFICITY PEPTIDE-MHC BINDING T-CELL EPITOPE |
topic |
AFFINITY PREDICTIONS IMMUNOGENIC PEPTIDES MHC BINDING SPECIFICITY PEPTIDE-MHC BINDING T-CELL EPITOPE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/3.3 https://purl.org/becyt/ford/3 |
dc.description.none.fl_txt_mv |
Major histocompatibility complex class II (MHC-II) molecules are expressed on the surface of professional antigen-presenting cells where they display peptides to T helper cells, which orchestrate the onset and outcome of many host immune responses. Understanding which peptides will be presented by the MHC-II molecule is therefore important for understanding the activation of T helper cells and can be used to identify T-cell epitopes. We here present updated versions of two MHC–II–peptide binding affinity prediction methods, NetMHCII and NetMHCIIpan. These were constructed using an extended data set of quantitative MHC–peptide binding affinity data obtained from the Immune Epitope Database covering HLA-DR, HLA-DQ, HLA-DP and H-2 mouse molecules. We show that training with this extended data set improved the performance for peptide binding predictions for both methods. Both methods are publicly available at www.cbs.dtu.dk/services/NetMHCII-2.3 and www.cbs.dtu.dk/services/NetMHCIIpan-3.2. Fil: Jensen, Kamilla Kjærgaard. Technical University of Denmark; Dinamarca Fil: Andreatta, Massimo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina Fil: Marcatili, Paolo. Technical University of Denmark; Dinamarca Fil: Buus, Søren. University of Copenhagen; Dinamarca Fil: Greenbaum, Jason A.. La Jolla Institute for Allergy and Immunology; Estados Unidos Fil: Yan, Zhen. La Jolla Institute for Allergy and Immunology; Estados Unidos Fil: Sette, Alessandro. University of California at San Diego; Estados Unidos. La Jolla Institute for Allergy and Immunology; Estados Unidos Fil: Peters, Bjoern. University of California at San Diego; Estados Unidos. La Jolla Institute for Allergy and Immunology; Estados Unidos Fil: Nielsen, Morten. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina. Technical University of Denmark; Dinamarca |
description |
Major histocompatibility complex class II (MHC-II) molecules are expressed on the surface of professional antigen-presenting cells where they display peptides to T helper cells, which orchestrate the onset and outcome of many host immune responses. Understanding which peptides will be presented by the MHC-II molecule is therefore important for understanding the activation of T helper cells and can be used to identify T-cell epitopes. We here present updated versions of two MHC–II–peptide binding affinity prediction methods, NetMHCII and NetMHCIIpan. These were constructed using an extended data set of quantitative MHC–peptide binding affinity data obtained from the Immune Epitope Database covering HLA-DR, HLA-DQ, HLA-DP and H-2 mouse molecules. We show that training with this extended data set improved the performance for peptide binding predictions for both methods. Both methods are publicly available at www.cbs.dtu.dk/services/NetMHCII-2.3 and www.cbs.dtu.dk/services/NetMHCIIpan-3.2. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/96635 Jensen, Kamilla Kjærgaard; Andreatta, Massimo; Marcatili, Paolo; Buus, Søren; Greenbaum, Jason A.; et al.; Improved methods for predicting peptide binding affinity to MHC class II molecules; Wiley Blackwell Publishing, Inc; Immunology; 154; 3; 7-2018; 394-406 0019-2805 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/96635 |
identifier_str_mv |
Jensen, Kamilla Kjærgaard; Andreatta, Massimo; Marcatili, Paolo; Buus, Søren; Greenbaum, Jason A.; et al.; Improved methods for predicting peptide binding affinity to MHC class II molecules; Wiley Blackwell Publishing, Inc; Immunology; 154; 3; 7-2018; 394-406 0019-2805 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://doi.wiley.com/10.1111/imm.12889 info:eu-repo/semantics/altIdentifier/doi/10.1111/imm.12889 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268696325652480 |
score |
13.13397 |