Footprints of antigen processing boost MHC class II natural ligand predictions
- Autores
- Barra, Carolina M.; Alvarez, Bruno; Paul, Sinu; Sette, Alessandro; Peters, Bjoern; Andreatta, Massimo; Buus, Søren; Nielsen, Morten
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- BACKGROUND: Major histocompatibility complex class II (MHC-II) molecules present peptide fragments to T cells for immune recognition. Current predictors for peptide to MHC-II binding are trained on binding affinity data, generated in vitro and therefore lacking information about antigen processing. METHODS: We generate prediction models of peptide to MHC-II binding trained with naturally eluted ligands derived from mass spectrometry in addition to peptide binding affinity data sets. RESULTS: We show that integrated prediction models incorporate identifiable rules of antigen processing. In fact, we observed detectable signals of protease cleavage at defined positions of the ligands. We also hypothesize a role of the length of the terminal ligand protrusions for trimming the peptide to the MHC presented ligand. CONCLUSIONS: The results of integrating binding affinity and eluted ligand data in a combined model demonstrate improved performance for the prediction of MHC-II ligands and T cell epitopes and foreshadow a new generation of improved peptide to MHC-II prediction tools accounting for the plurality of factors that determine natural presentation of antigens.
Fil: Barra, Carolina M.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina
Fil: Alvarez, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina
Fil: Paul, Sinu. La Jolla Institute for Allergy and Immunology; Estados Unidos
Fil: Sette, Alessandro. La Jolla Institute for Allergy and Immunology; Estados Unidos
Fil: Peters, Bjoern. La Jolla Institute for Allergy and Immunology; Estados Unidos
Fil: Andreatta, Massimo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina
Fil: Buus, Søren. University Of Copenhagen, Faculty Of Health Sciences; Dinamarca
Fil: Nielsen, Morten. Technical University of Denmark; Dinamarca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina - Materia
-
ANTIGEN PROCESSING
BINDING PREDICTIONS
ELUTED LIGANDS
MACHINE LEARNING
MASS SPECTROMETRY
MHC-II
NEURAL NETWORKS
T CELL EPITOPE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/102765
Ver los metadatos del registro completo
id |
CONICETDig_6fab8fc22cae2d21920192b2122784fb |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/102765 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Footprints of antigen processing boost MHC class II natural ligand predictionsBarra, Carolina M.Alvarez, BrunoPaul, SinuSette, AlessandroPeters, BjoernAndreatta, MassimoBuus, SørenNielsen, MortenANTIGEN PROCESSINGBINDING PREDICTIONSELUTED LIGANDSMACHINE LEARNINGMASS SPECTROMETRYMHC-IINEURAL NETWORKST CELL EPITOPEhttps://purl.org/becyt/ford/3.3https://purl.org/becyt/ford/3BACKGROUND: Major histocompatibility complex class II (MHC-II) molecules present peptide fragments to T cells for immune recognition. Current predictors for peptide to MHC-II binding are trained on binding affinity data, generated in vitro and therefore lacking information about antigen processing. METHODS: We generate prediction models of peptide to MHC-II binding trained with naturally eluted ligands derived from mass spectrometry in addition to peptide binding affinity data sets. RESULTS: We show that integrated prediction models incorporate identifiable rules of antigen processing. In fact, we observed detectable signals of protease cleavage at defined positions of the ligands. We also hypothesize a role of the length of the terminal ligand protrusions for trimming the peptide to the MHC presented ligand. CONCLUSIONS: The results of integrating binding affinity and eluted ligand data in a combined model demonstrate improved performance for the prediction of MHC-II ligands and T cell epitopes and foreshadow a new generation of improved peptide to MHC-II prediction tools accounting for the plurality of factors that determine natural presentation of antigens.Fil: Barra, Carolina M.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Alvarez, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Paul, Sinu. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Sette, Alessandro. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Peters, Bjoern. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Andreatta, Massimo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Buus, Søren. University Of Copenhagen, Faculty Of Health Sciences; DinamarcaFil: Nielsen, Morten. Technical University of Denmark; Dinamarca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaSpringer Nature2018-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/102765Barra, Carolina M.; Alvarez, Bruno; Paul, Sinu; Sette, Alessandro; Peters, Bjoern; et al.; Footprints of antigen processing boost MHC class II natural ligand predictions; Springer Nature; Genome Medicine; 10; 1; 11-20181756-994XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1186/s13073-018-0594-6info:eu-repo/semantics/altIdentifier/url/https://genomemedicine.biomedcentral.com/articles/10.1186/s13073-018-0594-6info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:25:05Zoai:ri.conicet.gov.ar:11336/102765instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:25:05.309CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Footprints of antigen processing boost MHC class II natural ligand predictions |
title |
Footprints of antigen processing boost MHC class II natural ligand predictions |
spellingShingle |
Footprints of antigen processing boost MHC class II natural ligand predictions Barra, Carolina M. ANTIGEN PROCESSING BINDING PREDICTIONS ELUTED LIGANDS MACHINE LEARNING MASS SPECTROMETRY MHC-II NEURAL NETWORKS T CELL EPITOPE |
title_short |
Footprints of antigen processing boost MHC class II natural ligand predictions |
title_full |
Footprints of antigen processing boost MHC class II natural ligand predictions |
title_fullStr |
Footprints of antigen processing boost MHC class II natural ligand predictions |
title_full_unstemmed |
Footprints of antigen processing boost MHC class II natural ligand predictions |
title_sort |
Footprints of antigen processing boost MHC class II natural ligand predictions |
dc.creator.none.fl_str_mv |
Barra, Carolina M. Alvarez, Bruno Paul, Sinu Sette, Alessandro Peters, Bjoern Andreatta, Massimo Buus, Søren Nielsen, Morten |
author |
Barra, Carolina M. |
author_facet |
Barra, Carolina M. Alvarez, Bruno Paul, Sinu Sette, Alessandro Peters, Bjoern Andreatta, Massimo Buus, Søren Nielsen, Morten |
author_role |
author |
author2 |
Alvarez, Bruno Paul, Sinu Sette, Alessandro Peters, Bjoern Andreatta, Massimo Buus, Søren Nielsen, Morten |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
ANTIGEN PROCESSING BINDING PREDICTIONS ELUTED LIGANDS MACHINE LEARNING MASS SPECTROMETRY MHC-II NEURAL NETWORKS T CELL EPITOPE |
topic |
ANTIGEN PROCESSING BINDING PREDICTIONS ELUTED LIGANDS MACHINE LEARNING MASS SPECTROMETRY MHC-II NEURAL NETWORKS T CELL EPITOPE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/3.3 https://purl.org/becyt/ford/3 |
dc.description.none.fl_txt_mv |
BACKGROUND: Major histocompatibility complex class II (MHC-II) molecules present peptide fragments to T cells for immune recognition. Current predictors for peptide to MHC-II binding are trained on binding affinity data, generated in vitro and therefore lacking information about antigen processing. METHODS: We generate prediction models of peptide to MHC-II binding trained with naturally eluted ligands derived from mass spectrometry in addition to peptide binding affinity data sets. RESULTS: We show that integrated prediction models incorporate identifiable rules of antigen processing. In fact, we observed detectable signals of protease cleavage at defined positions of the ligands. We also hypothesize a role of the length of the terminal ligand protrusions for trimming the peptide to the MHC presented ligand. CONCLUSIONS: The results of integrating binding affinity and eluted ligand data in a combined model demonstrate improved performance for the prediction of MHC-II ligands and T cell epitopes and foreshadow a new generation of improved peptide to MHC-II prediction tools accounting for the plurality of factors that determine natural presentation of antigens. Fil: Barra, Carolina M.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina Fil: Alvarez, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina Fil: Paul, Sinu. La Jolla Institute for Allergy and Immunology; Estados Unidos Fil: Sette, Alessandro. La Jolla Institute for Allergy and Immunology; Estados Unidos Fil: Peters, Bjoern. La Jolla Institute for Allergy and Immunology; Estados Unidos Fil: Andreatta, Massimo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina Fil: Buus, Søren. University Of Copenhagen, Faculty Of Health Sciences; Dinamarca Fil: Nielsen, Morten. Technical University of Denmark; Dinamarca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina |
description |
BACKGROUND: Major histocompatibility complex class II (MHC-II) molecules present peptide fragments to T cells for immune recognition. Current predictors for peptide to MHC-II binding are trained on binding affinity data, generated in vitro and therefore lacking information about antigen processing. METHODS: We generate prediction models of peptide to MHC-II binding trained with naturally eluted ligands derived from mass spectrometry in addition to peptide binding affinity data sets. RESULTS: We show that integrated prediction models incorporate identifiable rules of antigen processing. In fact, we observed detectable signals of protease cleavage at defined positions of the ligands. We also hypothesize a role of the length of the terminal ligand protrusions for trimming the peptide to the MHC presented ligand. CONCLUSIONS: The results of integrating binding affinity and eluted ligand data in a combined model demonstrate improved performance for the prediction of MHC-II ligands and T cell epitopes and foreshadow a new generation of improved peptide to MHC-II prediction tools accounting for the plurality of factors that determine natural presentation of antigens. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/102765 Barra, Carolina M.; Alvarez, Bruno; Paul, Sinu; Sette, Alessandro; Peters, Bjoern; et al.; Footprints of antigen processing boost MHC class II natural ligand predictions; Springer Nature; Genome Medicine; 10; 1; 11-2018 1756-994X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/102765 |
identifier_str_mv |
Barra, Carolina M.; Alvarez, Bruno; Paul, Sinu; Sette, Alessandro; Peters, Bjoern; et al.; Footprints of antigen processing boost MHC class II natural ligand predictions; Springer Nature; Genome Medicine; 10; 1; 11-2018 1756-994X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1186/s13073-018-0594-6 info:eu-repo/semantics/altIdentifier/url/https://genomemedicine.biomedcentral.com/articles/10.1186/s13073-018-0594-6 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer Nature |
publisher.none.fl_str_mv |
Springer Nature |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083396016537600 |
score |
13.22299 |