3D Printing of Ordered Mesoporous Silica Using Light‐Induced Sol‐Gel Chemistry
- Autores
- Gluns, Johanna; Zhao, Lucy; Spiehl, Dieter; Mikolei, Joanna J.; Pardehkhorram, Raheleh; Ceolin, Marcelo Raul; Andrieu Brunsen, Annette
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Mesoporous ceramic materials used in applications such as catalysis, filtration, or sensing, are usually hierarchically structured. Thereby, their structural hierarchy is often inherently related to the manufacturing methods and cannot be independently locally designed along all length scales. This study combines light-based additive manufacturing and bottom-up light-induced self-assembly (LISA) sol-gel chemistry to engineer hierarchically structured porous silica from the nanoscale to the macroscopic object geometry. A LISA-based printing solution that enables printing of ordered mesoporous silica with geometrically complex shapes by using a commercially available digital light processing (DLP)-based 3D printer is presented. This approach exploits the self-assembly process of block copolymer mesopore templates, such as Pluronic P123, and hydrolysis and condensation of silica precursors upon irradiation in the 3D printer to shape mesoporous silica objects. Furthermore, different resins are added to the LISA solution to print 3D silica-resin objects. Mesoporous silica objects up to 10 mm in size, consisting of ordered mesopores with diameters around 5 nm and having high specific surface areas of ≈400 m2 g−1 are successfullyprinted with a fast and easy post-processing.
Fil: Gluns, Johanna. Universitat Technische Darmstadt; Alemania
Fil: Zhao, Lucy. Universitat Technische Darmstadt; Alemania
Fil: Spiehl, Dieter. Universitat Technische Darmstadt; Alemania
Fil: Mikolei, Joanna J.. Universitat Technische Darmstadt; Alemania
Fil: Pardehkhorram, Raheleh. Universitat Technische Darmstadt; Alemania
Fil: Ceolin, Marcelo Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Fil: Andrieu Brunsen, Annette. Universitat Technische Darmstadt; Alemania - Materia
-
PRINTING
MESOPOROUS
LIGHT PROCESSING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/262570
Ver los metadatos del registro completo
id |
CONICETDig_a93bb2a4bef5d60f17f2b4e34fd8cb6f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/262570 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
3D Printing of Ordered Mesoporous Silica Using Light‐Induced Sol‐Gel ChemistryGluns, JohannaZhao, LucySpiehl, DieterMikolei, Joanna J.Pardehkhorram, RahelehCeolin, Marcelo RaulAndrieu Brunsen, AnnettePRINTINGMESOPOROUSLIGHT PROCESSINGhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Mesoporous ceramic materials used in applications such as catalysis, filtration, or sensing, are usually hierarchically structured. Thereby, their structural hierarchy is often inherently related to the manufacturing methods and cannot be independently locally designed along all length scales. This study combines light-based additive manufacturing and bottom-up light-induced self-assembly (LISA) sol-gel chemistry to engineer hierarchically structured porous silica from the nanoscale to the macroscopic object geometry. A LISA-based printing solution that enables printing of ordered mesoporous silica with geometrically complex shapes by using a commercially available digital light processing (DLP)-based 3D printer is presented. This approach exploits the self-assembly process of block copolymer mesopore templates, such as Pluronic P123, and hydrolysis and condensation of silica precursors upon irradiation in the 3D printer to shape mesoporous silica objects. Furthermore, different resins are added to the LISA solution to print 3D silica-resin objects. Mesoporous silica objects up to 10 mm in size, consisting of ordered mesopores with diameters around 5 nm and having high specific surface areas of ≈400 m2 g−1 are successfullyprinted with a fast and easy post-processing.Fil: Gluns, Johanna. Universitat Technische Darmstadt; AlemaniaFil: Zhao, Lucy. Universitat Technische Darmstadt; AlemaniaFil: Spiehl, Dieter. Universitat Technische Darmstadt; AlemaniaFil: Mikolei, Joanna J.. Universitat Technische Darmstadt; AlemaniaFil: Pardehkhorram, Raheleh. Universitat Technische Darmstadt; AlemaniaFil: Ceolin, Marcelo Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Andrieu Brunsen, Annette. Universitat Technische Darmstadt; AlemaniaWiley VCH Verlag2024-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/262570Gluns, Johanna; Zhao, Lucy; Spiehl, Dieter; Mikolei, Joanna J.; Pardehkhorram, Raheleh; et al.; 3D Printing of Ordered Mesoporous Silica Using Light‐Induced Sol‐Gel Chemistry; Wiley VCH Verlag; Advanced Functional Materials; 34; 46; 6-2024; 1-101616-301XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/adfm.202405511info:eu-repo/semantics/altIdentifier/doi/10.1002/adfm.202405511info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:50:27Zoai:ri.conicet.gov.ar:11336/262570instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:50:28.075CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
3D Printing of Ordered Mesoporous Silica Using Light‐Induced Sol‐Gel Chemistry |
title |
3D Printing of Ordered Mesoporous Silica Using Light‐Induced Sol‐Gel Chemistry |
spellingShingle |
3D Printing of Ordered Mesoporous Silica Using Light‐Induced Sol‐Gel Chemistry Gluns, Johanna PRINTING MESOPOROUS LIGHT PROCESSING |
title_short |
3D Printing of Ordered Mesoporous Silica Using Light‐Induced Sol‐Gel Chemistry |
title_full |
3D Printing of Ordered Mesoporous Silica Using Light‐Induced Sol‐Gel Chemistry |
title_fullStr |
3D Printing of Ordered Mesoporous Silica Using Light‐Induced Sol‐Gel Chemistry |
title_full_unstemmed |
3D Printing of Ordered Mesoporous Silica Using Light‐Induced Sol‐Gel Chemistry |
title_sort |
3D Printing of Ordered Mesoporous Silica Using Light‐Induced Sol‐Gel Chemistry |
dc.creator.none.fl_str_mv |
Gluns, Johanna Zhao, Lucy Spiehl, Dieter Mikolei, Joanna J. Pardehkhorram, Raheleh Ceolin, Marcelo Raul Andrieu Brunsen, Annette |
author |
Gluns, Johanna |
author_facet |
Gluns, Johanna Zhao, Lucy Spiehl, Dieter Mikolei, Joanna J. Pardehkhorram, Raheleh Ceolin, Marcelo Raul Andrieu Brunsen, Annette |
author_role |
author |
author2 |
Zhao, Lucy Spiehl, Dieter Mikolei, Joanna J. Pardehkhorram, Raheleh Ceolin, Marcelo Raul Andrieu Brunsen, Annette |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
PRINTING MESOPOROUS LIGHT PROCESSING |
topic |
PRINTING MESOPOROUS LIGHT PROCESSING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Mesoporous ceramic materials used in applications such as catalysis, filtration, or sensing, are usually hierarchically structured. Thereby, their structural hierarchy is often inherently related to the manufacturing methods and cannot be independently locally designed along all length scales. This study combines light-based additive manufacturing and bottom-up light-induced self-assembly (LISA) sol-gel chemistry to engineer hierarchically structured porous silica from the nanoscale to the macroscopic object geometry. A LISA-based printing solution that enables printing of ordered mesoporous silica with geometrically complex shapes by using a commercially available digital light processing (DLP)-based 3D printer is presented. This approach exploits the self-assembly process of block copolymer mesopore templates, such as Pluronic P123, and hydrolysis and condensation of silica precursors upon irradiation in the 3D printer to shape mesoporous silica objects. Furthermore, different resins are added to the LISA solution to print 3D silica-resin objects. Mesoporous silica objects up to 10 mm in size, consisting of ordered mesopores with diameters around 5 nm and having high specific surface areas of ≈400 m2 g−1 are successfullyprinted with a fast and easy post-processing. Fil: Gluns, Johanna. Universitat Technische Darmstadt; Alemania Fil: Zhao, Lucy. Universitat Technische Darmstadt; Alemania Fil: Spiehl, Dieter. Universitat Technische Darmstadt; Alemania Fil: Mikolei, Joanna J.. Universitat Technische Darmstadt; Alemania Fil: Pardehkhorram, Raheleh. Universitat Technische Darmstadt; Alemania Fil: Ceolin, Marcelo Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina Fil: Andrieu Brunsen, Annette. Universitat Technische Darmstadt; Alemania |
description |
Mesoporous ceramic materials used in applications such as catalysis, filtration, or sensing, are usually hierarchically structured. Thereby, their structural hierarchy is often inherently related to the manufacturing methods and cannot be independently locally designed along all length scales. This study combines light-based additive manufacturing and bottom-up light-induced self-assembly (LISA) sol-gel chemistry to engineer hierarchically structured porous silica from the nanoscale to the macroscopic object geometry. A LISA-based printing solution that enables printing of ordered mesoporous silica with geometrically complex shapes by using a commercially available digital light processing (DLP)-based 3D printer is presented. This approach exploits the self-assembly process of block copolymer mesopore templates, such as Pluronic P123, and hydrolysis and condensation of silica precursors upon irradiation in the 3D printer to shape mesoporous silica objects. Furthermore, different resins are added to the LISA solution to print 3D silica-resin objects. Mesoporous silica objects up to 10 mm in size, consisting of ordered mesopores with diameters around 5 nm and having high specific surface areas of ≈400 m2 g−1 are successfullyprinted with a fast and easy post-processing. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/262570 Gluns, Johanna; Zhao, Lucy; Spiehl, Dieter; Mikolei, Joanna J.; Pardehkhorram, Raheleh; et al.; 3D Printing of Ordered Mesoporous Silica Using Light‐Induced Sol‐Gel Chemistry; Wiley VCH Verlag; Advanced Functional Materials; 34; 46; 6-2024; 1-10 1616-301X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/262570 |
identifier_str_mv |
Gluns, Johanna; Zhao, Lucy; Spiehl, Dieter; Mikolei, Joanna J.; Pardehkhorram, Raheleh; et al.; 3D Printing of Ordered Mesoporous Silica Using Light‐Induced Sol‐Gel Chemistry; Wiley VCH Verlag; Advanced Functional Materials; 34; 46; 6-2024; 1-10 1616-301X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/adfm.202405511 info:eu-repo/semantics/altIdentifier/doi/10.1002/adfm.202405511 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley VCH Verlag |
publisher.none.fl_str_mv |
Wiley VCH Verlag |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613555300597760 |
score |
13.070432 |