3D Printing of Ordered Mesoporous Silica Using Light‐Induced Sol‐Gel Chemistry

Autores
Gluns, Johanna; Zhao, Lucy; Spiehl, Dieter; Mikolei, Joanna J.; Pardehkhorram, Raheleh; Ceolin, Marcelo Raul; Andrieu Brunsen, Annette
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Mesoporous ceramic materials used in applications such as catalysis, filtration, or sensing, are usually hierarchically structured. Thereby, their structural hierarchy is often inherently related to the manufacturing methods and cannot be independently locally designed along all length scales. This study combines light-based additive manufacturing and bottom-up light-induced self-assembly (LISA) sol-gel chemistry to engineer hierarchically structured porous silica from the nanoscale to the macroscopic object geometry. A LISA-based printing solution that enables printing of ordered mesoporous silica with geometrically complex shapes by using a commercially available digital light processing (DLP)-based 3D printer is presented. This approach exploits the self-assembly process of block copolymer mesopore templates, such as Pluronic P123, and hydrolysis and condensation of silica precursors upon irradiation in the 3D printer to shape mesoporous silica objects. Furthermore, different resins are added to the LISA solution to print 3D silica-resin objects. Mesoporous silica objects up to 10 mm in size, consisting of ordered mesopores with diameters around 5 nm and having high specific surface areas of ≈400 m2 g−1 are successfullyprinted with a fast and easy post-processing.
Fil: Gluns, Johanna. Universitat Technische Darmstadt; Alemania
Fil: Zhao, Lucy. Universitat Technische Darmstadt; Alemania
Fil: Spiehl, Dieter. Universitat Technische Darmstadt; Alemania
Fil: Mikolei, Joanna J.. Universitat Technische Darmstadt; Alemania
Fil: Pardehkhorram, Raheleh. Universitat Technische Darmstadt; Alemania
Fil: Ceolin, Marcelo Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Fil: Andrieu Brunsen, Annette. Universitat Technische Darmstadt; Alemania
Materia
PRINTING
MESOPOROUS
LIGHT PROCESSING
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/262570

id CONICETDig_a93bb2a4bef5d60f17f2b4e34fd8cb6f
oai_identifier_str oai:ri.conicet.gov.ar:11336/262570
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling 3D Printing of Ordered Mesoporous Silica Using Light‐Induced Sol‐Gel ChemistryGluns, JohannaZhao, LucySpiehl, DieterMikolei, Joanna J.Pardehkhorram, RahelehCeolin, Marcelo RaulAndrieu Brunsen, AnnettePRINTINGMESOPOROUSLIGHT PROCESSINGhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Mesoporous ceramic materials used in applications such as catalysis, filtration, or sensing, are usually hierarchically structured. Thereby, their structural hierarchy is often inherently related to the manufacturing methods and cannot be independently locally designed along all length scales. This study combines light-based additive manufacturing and bottom-up light-induced self-assembly (LISA) sol-gel chemistry to engineer hierarchically structured porous silica from the nanoscale to the macroscopic object geometry. A LISA-based printing solution that enables printing of ordered mesoporous silica with geometrically complex shapes by using a commercially available digital light processing (DLP)-based 3D printer is presented. This approach exploits the self-assembly process of block copolymer mesopore templates, such as Pluronic P123, and hydrolysis and condensation of silica precursors upon irradiation in the 3D printer to shape mesoporous silica objects. Furthermore, different resins are added to the LISA solution to print 3D silica-resin objects. Mesoporous silica objects up to 10 mm in size, consisting of ordered mesopores with diameters around 5 nm and having high specific surface areas of ≈400 m2 g−1 are successfullyprinted with a fast and easy post-processing.Fil: Gluns, Johanna. Universitat Technische Darmstadt; AlemaniaFil: Zhao, Lucy. Universitat Technische Darmstadt; AlemaniaFil: Spiehl, Dieter. Universitat Technische Darmstadt; AlemaniaFil: Mikolei, Joanna J.. Universitat Technische Darmstadt; AlemaniaFil: Pardehkhorram, Raheleh. Universitat Technische Darmstadt; AlemaniaFil: Ceolin, Marcelo Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Andrieu Brunsen, Annette. Universitat Technische Darmstadt; AlemaniaWiley VCH Verlag2024-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/262570Gluns, Johanna; Zhao, Lucy; Spiehl, Dieter; Mikolei, Joanna J.; Pardehkhorram, Raheleh; et al.; 3D Printing of Ordered Mesoporous Silica Using Light‐Induced Sol‐Gel Chemistry; Wiley VCH Verlag; Advanced Functional Materials; 34; 46; 6-2024; 1-101616-301XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/adfm.202405511info:eu-repo/semantics/altIdentifier/doi/10.1002/adfm.202405511info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:50:27Zoai:ri.conicet.gov.ar:11336/262570instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:50:28.075CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv 3D Printing of Ordered Mesoporous Silica Using Light‐Induced Sol‐Gel Chemistry
title 3D Printing of Ordered Mesoporous Silica Using Light‐Induced Sol‐Gel Chemistry
spellingShingle 3D Printing of Ordered Mesoporous Silica Using Light‐Induced Sol‐Gel Chemistry
Gluns, Johanna
PRINTING
MESOPOROUS
LIGHT PROCESSING
title_short 3D Printing of Ordered Mesoporous Silica Using Light‐Induced Sol‐Gel Chemistry
title_full 3D Printing of Ordered Mesoporous Silica Using Light‐Induced Sol‐Gel Chemistry
title_fullStr 3D Printing of Ordered Mesoporous Silica Using Light‐Induced Sol‐Gel Chemistry
title_full_unstemmed 3D Printing of Ordered Mesoporous Silica Using Light‐Induced Sol‐Gel Chemistry
title_sort 3D Printing of Ordered Mesoporous Silica Using Light‐Induced Sol‐Gel Chemistry
dc.creator.none.fl_str_mv Gluns, Johanna
Zhao, Lucy
Spiehl, Dieter
Mikolei, Joanna J.
Pardehkhorram, Raheleh
Ceolin, Marcelo Raul
Andrieu Brunsen, Annette
author Gluns, Johanna
author_facet Gluns, Johanna
Zhao, Lucy
Spiehl, Dieter
Mikolei, Joanna J.
Pardehkhorram, Raheleh
Ceolin, Marcelo Raul
Andrieu Brunsen, Annette
author_role author
author2 Zhao, Lucy
Spiehl, Dieter
Mikolei, Joanna J.
Pardehkhorram, Raheleh
Ceolin, Marcelo Raul
Andrieu Brunsen, Annette
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv PRINTING
MESOPOROUS
LIGHT PROCESSING
topic PRINTING
MESOPOROUS
LIGHT PROCESSING
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Mesoporous ceramic materials used in applications such as catalysis, filtration, or sensing, are usually hierarchically structured. Thereby, their structural hierarchy is often inherently related to the manufacturing methods and cannot be independently locally designed along all length scales. This study combines light-based additive manufacturing and bottom-up light-induced self-assembly (LISA) sol-gel chemistry to engineer hierarchically structured porous silica from the nanoscale to the macroscopic object geometry. A LISA-based printing solution that enables printing of ordered mesoporous silica with geometrically complex shapes by using a commercially available digital light processing (DLP)-based 3D printer is presented. This approach exploits the self-assembly process of block copolymer mesopore templates, such as Pluronic P123, and hydrolysis and condensation of silica precursors upon irradiation in the 3D printer to shape mesoporous silica objects. Furthermore, different resins are added to the LISA solution to print 3D silica-resin objects. Mesoporous silica objects up to 10 mm in size, consisting of ordered mesopores with diameters around 5 nm and having high specific surface areas of ≈400 m2 g−1 are successfullyprinted with a fast and easy post-processing.
Fil: Gluns, Johanna. Universitat Technische Darmstadt; Alemania
Fil: Zhao, Lucy. Universitat Technische Darmstadt; Alemania
Fil: Spiehl, Dieter. Universitat Technische Darmstadt; Alemania
Fil: Mikolei, Joanna J.. Universitat Technische Darmstadt; Alemania
Fil: Pardehkhorram, Raheleh. Universitat Technische Darmstadt; Alemania
Fil: Ceolin, Marcelo Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Fil: Andrieu Brunsen, Annette. Universitat Technische Darmstadt; Alemania
description Mesoporous ceramic materials used in applications such as catalysis, filtration, or sensing, are usually hierarchically structured. Thereby, their structural hierarchy is often inherently related to the manufacturing methods and cannot be independently locally designed along all length scales. This study combines light-based additive manufacturing and bottom-up light-induced self-assembly (LISA) sol-gel chemistry to engineer hierarchically structured porous silica from the nanoscale to the macroscopic object geometry. A LISA-based printing solution that enables printing of ordered mesoporous silica with geometrically complex shapes by using a commercially available digital light processing (DLP)-based 3D printer is presented. This approach exploits the self-assembly process of block copolymer mesopore templates, such as Pluronic P123, and hydrolysis and condensation of silica precursors upon irradiation in the 3D printer to shape mesoporous silica objects. Furthermore, different resins are added to the LISA solution to print 3D silica-resin objects. Mesoporous silica objects up to 10 mm in size, consisting of ordered mesopores with diameters around 5 nm and having high specific surface areas of ≈400 m2 g−1 are successfullyprinted with a fast and easy post-processing.
publishDate 2024
dc.date.none.fl_str_mv 2024-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/262570
Gluns, Johanna; Zhao, Lucy; Spiehl, Dieter; Mikolei, Joanna J.; Pardehkhorram, Raheleh; et al.; 3D Printing of Ordered Mesoporous Silica Using Light‐Induced Sol‐Gel Chemistry; Wiley VCH Verlag; Advanced Functional Materials; 34; 46; 6-2024; 1-10
1616-301X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/262570
identifier_str_mv Gluns, Johanna; Zhao, Lucy; Spiehl, Dieter; Mikolei, Joanna J.; Pardehkhorram, Raheleh; et al.; 3D Printing of Ordered Mesoporous Silica Using Light‐Induced Sol‐Gel Chemistry; Wiley VCH Verlag; Advanced Functional Materials; 34; 46; 6-2024; 1-10
1616-301X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/adfm.202405511
info:eu-repo/semantics/altIdentifier/doi/10.1002/adfm.202405511
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley VCH Verlag
publisher.none.fl_str_mv Wiley VCH Verlag
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613555300597760
score 13.070432