A new method for 3D printing drugs: Melting solidification printing process

Autores
Coggiola, Vivian Natali; Real, Juan Pablo; Palma, Santiago Daniel
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Conventional manufacturing methods for oral administration forms are adapted to produce large batches of tablets of identical dosage form (same geometry, size and dosage). These methods are inflexible or not economically feasible to be adapted to the production of small, customized batches, either for special groups of patients or special geometries . In recent decades, additive manufacturing, more commonly known as 3D printing (3DP), has become a promising tool in many production processes, including the medical and pharmaceutical industry. This technology enables on demand, layer-by-layer fabrication of 3D objects of almost any shape and size based on digital designs. In this way, it is easy to manufacture individualized objects, custom made . This technology allows precise doses to be deposited, based on the initial ?ink? concentration and the physical dimensions of the formulation . Pharmaceutical industry interest in 3DP has grown continuously since the US FDA approval of a 3D-printed drug in August 2015. The potential of 3DP in the pharmaceutical field is enormous. 3DP simplifies the traditional manufacturing process by reducing the usual steps (grinding, wet granulation, dry granulation, compression, coating, etc.) and allows for the variation of the sizes and geometry of the tablets; and it also allows the combination of materials of different nature . Although this type of production cannot match the speed (it is 60-times slower) or the costs of large-scale production methods, the 3D printers? ability to produce different parts with enormous flexibility would allow the manufacture of pharmaceutical forms on demand, that is, to individualize drugs according to the needs of each patient, as well as it would allow combining different active ingredients (multidose tablets)
Fil: Coggiola, Vivian Natali. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Investigación y Desarrollo en Tecnología Farmacéutica. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Unidad de Investigación y Desarrollo en Tecnología Farmacéutica; Argentina
Fil: Real, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Investigación y Desarrollo en Tecnología Farmacéutica. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Unidad de Investigación y Desarrollo en Tecnología Farmacéutica; Argentina
Fil: Palma, Santiago Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Investigación y Desarrollo en Tecnología Farmacéutica. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Unidad de Investigación y Desarrollo en Tecnología Farmacéutica; Argentina
Materia
3D PRINTING
DRUG DELIVERY
PERSONALIZED MEDICINE
PHARMACEUTICAL FABRICATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/137049

id CONICETDig_c23cbb986dd4b132b124636c9bb416de
oai_identifier_str oai:ri.conicet.gov.ar:11336/137049
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A new method for 3D printing drugs: Melting solidification printing processCoggiola, Vivian NataliReal, Juan PabloPalma, Santiago Daniel3D PRINTINGDRUG DELIVERYPERSONALIZED MEDICINEPHARMACEUTICAL FABRICATIONhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2Conventional manufacturing methods for oral administration forms are adapted to produce large batches of tablets of identical dosage form (same geometry, size and dosage). These methods are inflexible or not economically feasible to be adapted to the production of small, customized batches, either for special groups of patients or special geometries . In recent decades, additive manufacturing, more commonly known as 3D printing (3DP), has become a promising tool in many production processes, including the medical and pharmaceutical industry. This technology enables on demand, layer-by-layer fabrication of 3D objects of almost any shape and size based on digital designs. In this way, it is easy to manufacture individualized objects, custom made . This technology allows precise doses to be deposited, based on the initial ?ink? concentration and the physical dimensions of the formulation . Pharmaceutical industry interest in 3DP has grown continuously since the US FDA approval of a 3D-printed drug in August 2015. The potential of 3DP in the pharmaceutical field is enormous. 3DP simplifies the traditional manufacturing process by reducing the usual steps (grinding, wet granulation, dry granulation, compression, coating, etc.) and allows for the variation of the sizes and geometry of the tablets; and it also allows the combination of materials of different nature . Although this type of production cannot match the speed (it is 60-times slower) or the costs of large-scale production methods, the 3D printers? ability to produce different parts with enormous flexibility would allow the manufacture of pharmaceutical forms on demand, that is, to individualize drugs according to the needs of each patient, as well as it would allow combining different active ingredients (multidose tablets)Fil: Coggiola, Vivian Natali. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Investigación y Desarrollo en Tecnología Farmacéutica. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Unidad de Investigación y Desarrollo en Tecnología Farmacéutica; ArgentinaFil: Real, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Investigación y Desarrollo en Tecnología Farmacéutica. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Unidad de Investigación y Desarrollo en Tecnología Farmacéutica; ArgentinaFil: Palma, Santiago Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Investigación y Desarrollo en Tecnología Farmacéutica. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Unidad de Investigación y Desarrollo en Tecnología Farmacéutica; ArgentinaFuture Medicine2020-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/137049Coggiola, Vivian Natali; Real, Juan Pablo; Palma, Santiago Daniel; A new method for 3D printing drugs: Melting solidification printing process; Future Medicine; Journal of 3D Printing in Medicine; 4; 3; 9-2020; 131-1342059-47552059-4763CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.futuremedicine.com/doi/10.2217/3dp-2020-0024info:eu-repo/semantics/altIdentifier/doi/10.2217/3dp-2020-0024info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:41:35Zoai:ri.conicet.gov.ar:11336/137049instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:41:35.605CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A new method for 3D printing drugs: Melting solidification printing process
title A new method for 3D printing drugs: Melting solidification printing process
spellingShingle A new method for 3D printing drugs: Melting solidification printing process
Coggiola, Vivian Natali
3D PRINTING
DRUG DELIVERY
PERSONALIZED MEDICINE
PHARMACEUTICAL FABRICATION
title_short A new method for 3D printing drugs: Melting solidification printing process
title_full A new method for 3D printing drugs: Melting solidification printing process
title_fullStr A new method for 3D printing drugs: Melting solidification printing process
title_full_unstemmed A new method for 3D printing drugs: Melting solidification printing process
title_sort A new method for 3D printing drugs: Melting solidification printing process
dc.creator.none.fl_str_mv Coggiola, Vivian Natali
Real, Juan Pablo
Palma, Santiago Daniel
author Coggiola, Vivian Natali
author_facet Coggiola, Vivian Natali
Real, Juan Pablo
Palma, Santiago Daniel
author_role author
author2 Real, Juan Pablo
Palma, Santiago Daniel
author2_role author
author
dc.subject.none.fl_str_mv 3D PRINTING
DRUG DELIVERY
PERSONALIZED MEDICINE
PHARMACEUTICAL FABRICATION
topic 3D PRINTING
DRUG DELIVERY
PERSONALIZED MEDICINE
PHARMACEUTICAL FABRICATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Conventional manufacturing methods for oral administration forms are adapted to produce large batches of tablets of identical dosage form (same geometry, size and dosage). These methods are inflexible or not economically feasible to be adapted to the production of small, customized batches, either for special groups of patients or special geometries . In recent decades, additive manufacturing, more commonly known as 3D printing (3DP), has become a promising tool in many production processes, including the medical and pharmaceutical industry. This technology enables on demand, layer-by-layer fabrication of 3D objects of almost any shape and size based on digital designs. In this way, it is easy to manufacture individualized objects, custom made . This technology allows precise doses to be deposited, based on the initial ?ink? concentration and the physical dimensions of the formulation . Pharmaceutical industry interest in 3DP has grown continuously since the US FDA approval of a 3D-printed drug in August 2015. The potential of 3DP in the pharmaceutical field is enormous. 3DP simplifies the traditional manufacturing process by reducing the usual steps (grinding, wet granulation, dry granulation, compression, coating, etc.) and allows for the variation of the sizes and geometry of the tablets; and it also allows the combination of materials of different nature . Although this type of production cannot match the speed (it is 60-times slower) or the costs of large-scale production methods, the 3D printers? ability to produce different parts with enormous flexibility would allow the manufacture of pharmaceutical forms on demand, that is, to individualize drugs according to the needs of each patient, as well as it would allow combining different active ingredients (multidose tablets)
Fil: Coggiola, Vivian Natali. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Investigación y Desarrollo en Tecnología Farmacéutica. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Unidad de Investigación y Desarrollo en Tecnología Farmacéutica; Argentina
Fil: Real, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Investigación y Desarrollo en Tecnología Farmacéutica. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Unidad de Investigación y Desarrollo en Tecnología Farmacéutica; Argentina
Fil: Palma, Santiago Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Investigación y Desarrollo en Tecnología Farmacéutica. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Unidad de Investigación y Desarrollo en Tecnología Farmacéutica; Argentina
description Conventional manufacturing methods for oral administration forms are adapted to produce large batches of tablets of identical dosage form (same geometry, size and dosage). These methods are inflexible or not economically feasible to be adapted to the production of small, customized batches, either for special groups of patients or special geometries . In recent decades, additive manufacturing, more commonly known as 3D printing (3DP), has become a promising tool in many production processes, including the medical and pharmaceutical industry. This technology enables on demand, layer-by-layer fabrication of 3D objects of almost any shape and size based on digital designs. In this way, it is easy to manufacture individualized objects, custom made . This technology allows precise doses to be deposited, based on the initial ?ink? concentration and the physical dimensions of the formulation . Pharmaceutical industry interest in 3DP has grown continuously since the US FDA approval of a 3D-printed drug in August 2015. The potential of 3DP in the pharmaceutical field is enormous. 3DP simplifies the traditional manufacturing process by reducing the usual steps (grinding, wet granulation, dry granulation, compression, coating, etc.) and allows for the variation of the sizes and geometry of the tablets; and it also allows the combination of materials of different nature . Although this type of production cannot match the speed (it is 60-times slower) or the costs of large-scale production methods, the 3D printers? ability to produce different parts with enormous flexibility would allow the manufacture of pharmaceutical forms on demand, that is, to individualize drugs according to the needs of each patient, as well as it would allow combining different active ingredients (multidose tablets)
publishDate 2020
dc.date.none.fl_str_mv 2020-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/137049
Coggiola, Vivian Natali; Real, Juan Pablo; Palma, Santiago Daniel; A new method for 3D printing drugs: Melting solidification printing process; Future Medicine; Journal of 3D Printing in Medicine; 4; 3; 9-2020; 131-134
2059-4755
2059-4763
CONICET Digital
CONICET
url http://hdl.handle.net/11336/137049
identifier_str_mv Coggiola, Vivian Natali; Real, Juan Pablo; Palma, Santiago Daniel; A new method for 3D printing drugs: Melting solidification printing process; Future Medicine; Journal of 3D Printing in Medicine; 4; 3; 9-2020; 131-134
2059-4755
2059-4763
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.futuremedicine.com/doi/10.2217/3dp-2020-0024
info:eu-repo/semantics/altIdentifier/doi/10.2217/3dp-2020-0024
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Future Medicine
publisher.none.fl_str_mv Future Medicine
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614447187886080
score 13.070432