A theory of Stochastic systems. Part II: Process algebra
- Autores
- D'argenio, Pedro Ruben; Katoen, Joost Pieter
- Año de publicación
- 2005
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper introduces (pronounce spades), a stochastic process algebra for discrete-event systems, that extends traditional process algebra with timed actions whose delay is governed by general (a.o. continuous) probability distributions. The operational semantics is defined in terms of stochastic automata, a model that uses clocks—like in timed automata—to symbolically represent randomly timed systems, cf. the accompanying paper [P.R. D’Argenio, J.-P. Katoen, A theory of stochastic systems. Part I: Stochastic automata. Inf. Comput. (2005), to appear]. We show that stochastic automata and are equally expressive, and prove that the operational semantics of a term up to -conversion of clocks, is unique (modulo symbolic bisimulation). (Open) probabilistic and structural bisimulation are proven to be congruences for , and are equipped with an equational theory. The equational theory is shown to be complete for structural bisimulation and allows to derive an expansion law.
Fil: D'argenio, Pedro Ruben. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Katoen, Joost Pieter. Universiteit Twente (ut); - Materia
-
Axiomatisation
Bisimulation
Operational semantics
Stochastic automaton
Stochastic process algebra - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/242065
Ver los metadatos del registro completo
id |
CONICETDig_a8fa3ae8e96fe7f14fc9ddeaf020c79b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/242065 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A theory of Stochastic systems. Part II: Process algebraD'argenio, Pedro RubenKatoen, Joost PieterAxiomatisationBisimulationOperational semanticsStochastic automatonStochastic process algebrahttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2This paper introduces (pronounce spades), a stochastic process algebra for discrete-event systems, that extends traditional process algebra with timed actions whose delay is governed by general (a.o. continuous) probability distributions. The operational semantics is defined in terms of stochastic automata, a model that uses clocks—like in timed automata—to symbolically represent randomly timed systems, cf. the accompanying paper [P.R. D’Argenio, J.-P. Katoen, A theory of stochastic systems. Part I: Stochastic automata. Inf. Comput. (2005), to appear]. We show that stochastic automata and are equally expressive, and prove that the operational semantics of a term up to -conversion of clocks, is unique (modulo symbolic bisimulation). (Open) probabilistic and structural bisimulation are proven to be congruences for , and are equipped with an equational theory. The equational theory is shown to be complete for structural bisimulation and allows to derive an expansion law.Fil: D'argenio, Pedro Ruben. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Katoen, Joost Pieter. Universiteit Twente (ut);Academic Press Inc Elsevier Science2005-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/242065D'argenio, Pedro Ruben; Katoen, Joost Pieter; A theory of Stochastic systems. Part II: Process algebra; Academic Press Inc Elsevier Science; Information and Computation; 203; 1; 12-2005; 39-740890-5401CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0890540105001197info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ic.2005.07.002info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:05:40Zoai:ri.conicet.gov.ar:11336/242065instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:05:40.387CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A theory of Stochastic systems. Part II: Process algebra |
title |
A theory of Stochastic systems. Part II: Process algebra |
spellingShingle |
A theory of Stochastic systems. Part II: Process algebra D'argenio, Pedro Ruben Axiomatisation Bisimulation Operational semantics Stochastic automaton Stochastic process algebra |
title_short |
A theory of Stochastic systems. Part II: Process algebra |
title_full |
A theory of Stochastic systems. Part II: Process algebra |
title_fullStr |
A theory of Stochastic systems. Part II: Process algebra |
title_full_unstemmed |
A theory of Stochastic systems. Part II: Process algebra |
title_sort |
A theory of Stochastic systems. Part II: Process algebra |
dc.creator.none.fl_str_mv |
D'argenio, Pedro Ruben Katoen, Joost Pieter |
author |
D'argenio, Pedro Ruben |
author_facet |
D'argenio, Pedro Ruben Katoen, Joost Pieter |
author_role |
author |
author2 |
Katoen, Joost Pieter |
author2_role |
author |
dc.subject.none.fl_str_mv |
Axiomatisation Bisimulation Operational semantics Stochastic automaton Stochastic process algebra |
topic |
Axiomatisation Bisimulation Operational semantics Stochastic automaton Stochastic process algebra |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
This paper introduces (pronounce spades), a stochastic process algebra for discrete-event systems, that extends traditional process algebra with timed actions whose delay is governed by general (a.o. continuous) probability distributions. The operational semantics is defined in terms of stochastic automata, a model that uses clocks—like in timed automata—to symbolically represent randomly timed systems, cf. the accompanying paper [P.R. D’Argenio, J.-P. Katoen, A theory of stochastic systems. Part I: Stochastic automata. Inf. Comput. (2005), to appear]. We show that stochastic automata and are equally expressive, and prove that the operational semantics of a term up to -conversion of clocks, is unique (modulo symbolic bisimulation). (Open) probabilistic and structural bisimulation are proven to be congruences for , and are equipped with an equational theory. The equational theory is shown to be complete for structural bisimulation and allows to derive an expansion law. Fil: D'argenio, Pedro Ruben. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina Fil: Katoen, Joost Pieter. Universiteit Twente (ut); |
description |
This paper introduces (pronounce spades), a stochastic process algebra for discrete-event systems, that extends traditional process algebra with timed actions whose delay is governed by general (a.o. continuous) probability distributions. The operational semantics is defined in terms of stochastic automata, a model that uses clocks—like in timed automata—to symbolically represent randomly timed systems, cf. the accompanying paper [P.R. D’Argenio, J.-P. Katoen, A theory of stochastic systems. Part I: Stochastic automata. Inf. Comput. (2005), to appear]. We show that stochastic automata and are equally expressive, and prove that the operational semantics of a term up to -conversion of clocks, is unique (modulo symbolic bisimulation). (Open) probabilistic and structural bisimulation are proven to be congruences for , and are equipped with an equational theory. The equational theory is shown to be complete for structural bisimulation and allows to derive an expansion law. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/242065 D'argenio, Pedro Ruben; Katoen, Joost Pieter; A theory of Stochastic systems. Part II: Process algebra; Academic Press Inc Elsevier Science; Information and Computation; 203; 1; 12-2005; 39-74 0890-5401 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/242065 |
identifier_str_mv |
D'argenio, Pedro Ruben; Katoen, Joost Pieter; A theory of Stochastic systems. Part II: Process algebra; Academic Press Inc Elsevier Science; Information and Computation; 203; 1; 12-2005; 39-74 0890-5401 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0890540105001197 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ic.2005.07.002 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269922192785408 |
score |
13.13397 |