A theory of Stochastic systems. Part II: Process algebra

Autores
D'argenio, Pedro Ruben; Katoen, Joost Pieter
Año de publicación
2005
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This paper introduces (pronounce spades), a stochastic process algebra for discrete-event systems, that extends traditional process algebra with timed actions whose delay is governed by general (a.o. continuous) probability distributions. The operational semantics is defined in terms of stochastic automata, a model that uses clocks—like in timed automata—to symbolically represent randomly timed systems, cf. the accompanying paper [P.R. D’Argenio, J.-P. Katoen, A theory of stochastic systems. Part I: Stochastic automata. Inf. Comput. (2005), to appear]. We show that stochastic automata and are equally expressive, and prove that the operational semantics of a term up to -conversion of clocks, is unique (modulo symbolic bisimulation). (Open) probabilistic and structural bisimulation are proven to be congruences for , and are equipped with an equational theory. The equational theory is shown to be complete for structural bisimulation and allows to derive an expansion law.
Fil: D'argenio, Pedro Ruben. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Katoen, Joost Pieter. Universiteit Twente (ut);
Materia
Axiomatisation
Bisimulation
Operational semantics
Stochastic automaton
Stochastic process algebra
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/242065

id CONICETDig_a8fa3ae8e96fe7f14fc9ddeaf020c79b
oai_identifier_str oai:ri.conicet.gov.ar:11336/242065
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A theory of Stochastic systems. Part II: Process algebraD'argenio, Pedro RubenKatoen, Joost PieterAxiomatisationBisimulationOperational semanticsStochastic automatonStochastic process algebrahttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2This paper introduces (pronounce spades), a stochastic process algebra for discrete-event systems, that extends traditional process algebra with timed actions whose delay is governed by general (a.o. continuous) probability distributions. The operational semantics is defined in terms of stochastic automata, a model that uses clocks—like in timed automata—to symbolically represent randomly timed systems, cf. the accompanying paper [P.R. D’Argenio, J.-P. Katoen, A theory of stochastic systems. Part I: Stochastic automata. Inf. Comput. (2005), to appear]. We show that stochastic automata and are equally expressive, and prove that the operational semantics of a term up to -conversion of clocks, is unique (modulo symbolic bisimulation). (Open) probabilistic and structural bisimulation are proven to be congruences for , and are equipped with an equational theory. The equational theory is shown to be complete for structural bisimulation and allows to derive an expansion law.Fil: D'argenio, Pedro Ruben. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Katoen, Joost Pieter. Universiteit Twente (ut);Academic Press Inc Elsevier Science2005-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/242065D'argenio, Pedro Ruben; Katoen, Joost Pieter; A theory of Stochastic systems. Part II: Process algebra; Academic Press Inc Elsevier Science; Information and Computation; 203; 1; 12-2005; 39-740890-5401CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0890540105001197info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ic.2005.07.002info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:05:40Zoai:ri.conicet.gov.ar:11336/242065instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:05:40.387CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A theory of Stochastic systems. Part II: Process algebra
title A theory of Stochastic systems. Part II: Process algebra
spellingShingle A theory of Stochastic systems. Part II: Process algebra
D'argenio, Pedro Ruben
Axiomatisation
Bisimulation
Operational semantics
Stochastic automaton
Stochastic process algebra
title_short A theory of Stochastic systems. Part II: Process algebra
title_full A theory of Stochastic systems. Part II: Process algebra
title_fullStr A theory of Stochastic systems. Part II: Process algebra
title_full_unstemmed A theory of Stochastic systems. Part II: Process algebra
title_sort A theory of Stochastic systems. Part II: Process algebra
dc.creator.none.fl_str_mv D'argenio, Pedro Ruben
Katoen, Joost Pieter
author D'argenio, Pedro Ruben
author_facet D'argenio, Pedro Ruben
Katoen, Joost Pieter
author_role author
author2 Katoen, Joost Pieter
author2_role author
dc.subject.none.fl_str_mv Axiomatisation
Bisimulation
Operational semantics
Stochastic automaton
Stochastic process algebra
topic Axiomatisation
Bisimulation
Operational semantics
Stochastic automaton
Stochastic process algebra
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv This paper introduces (pronounce spades), a stochastic process algebra for discrete-event systems, that extends traditional process algebra with timed actions whose delay is governed by general (a.o. continuous) probability distributions. The operational semantics is defined in terms of stochastic automata, a model that uses clocks—like in timed automata—to symbolically represent randomly timed systems, cf. the accompanying paper [P.R. D’Argenio, J.-P. Katoen, A theory of stochastic systems. Part I: Stochastic automata. Inf. Comput. (2005), to appear]. We show that stochastic automata and are equally expressive, and prove that the operational semantics of a term up to -conversion of clocks, is unique (modulo symbolic bisimulation). (Open) probabilistic and structural bisimulation are proven to be congruences for , and are equipped with an equational theory. The equational theory is shown to be complete for structural bisimulation and allows to derive an expansion law.
Fil: D'argenio, Pedro Ruben. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Katoen, Joost Pieter. Universiteit Twente (ut);
description This paper introduces (pronounce spades), a stochastic process algebra for discrete-event systems, that extends traditional process algebra with timed actions whose delay is governed by general (a.o. continuous) probability distributions. The operational semantics is defined in terms of stochastic automata, a model that uses clocks—like in timed automata—to symbolically represent randomly timed systems, cf. the accompanying paper [P.R. D’Argenio, J.-P. Katoen, A theory of stochastic systems. Part I: Stochastic automata. Inf. Comput. (2005), to appear]. We show that stochastic automata and are equally expressive, and prove that the operational semantics of a term up to -conversion of clocks, is unique (modulo symbolic bisimulation). (Open) probabilistic and structural bisimulation are proven to be congruences for , and are equipped with an equational theory. The equational theory is shown to be complete for structural bisimulation and allows to derive an expansion law.
publishDate 2005
dc.date.none.fl_str_mv 2005-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/242065
D'argenio, Pedro Ruben; Katoen, Joost Pieter; A theory of Stochastic systems. Part II: Process algebra; Academic Press Inc Elsevier Science; Information and Computation; 203; 1; 12-2005; 39-74
0890-5401
CONICET Digital
CONICET
url http://hdl.handle.net/11336/242065
identifier_str_mv D'argenio, Pedro Ruben; Katoen, Joost Pieter; A theory of Stochastic systems. Part II: Process algebra; Academic Press Inc Elsevier Science; Information and Computation; 203; 1; 12-2005; 39-74
0890-5401
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0890540105001197
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ic.2005.07.002
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269922192785408
score 13.13397