Axiomatizing Bisimulation Equivalences and Metrics from Probabilistic SOS Rules

Autores
D'argenio, Pedro Ruben; Gebler, Daniel; Lee, Matias David
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Probabilistic transition system specifications (PTSS) provide structural operational semantics for reactive probabilistic labeled transition systems. Bisimulation equivalences and bisimulation metrics are fundamental notions to describe behavioral relations and distances of states, respectively. We provide a method to generate from a PTSS a sound and ground-complete equational axiomatization for strong and convex bisimilarity. The construction is based on the method of Aceto, Bloom and Vaandrager developed for non-deterministic transition system specifications. The novelty in our approach is to employ many-sorted algebras to axiomatize separately non-deterministic choice, probabilistic choice and their interaction. Furthermore, we generalize this method to axiomatize the strong and convex metric bisimulation distance of PTSS.
Fil: D'argenio, Pedro Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba; Argentina
Fil: Gebler, Daniel. University Amsterdam; Países Bajos
Fil: Lee, Matias David. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba; Argentina
Materia
Structured Operational Semantics
Probabilistic Transition Systems
Process Algebra
Bisimulation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/33966

id CONICETDig_968282f6698b1cea8c4f9df26e3e19cd
oai_identifier_str oai:ri.conicet.gov.ar:11336/33966
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Axiomatizing Bisimulation Equivalences and Metrics from Probabilistic SOS RulesD'argenio, Pedro RubenGebler, DanielLee, Matias DavidStructured Operational SemanticsProbabilistic Transition SystemsProcess AlgebraBisimulationhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Probabilistic transition system specifications (PTSS) provide structural operational semantics for reactive probabilistic labeled transition systems. Bisimulation equivalences and bisimulation metrics are fundamental notions to describe behavioral relations and distances of states, respectively. We provide a method to generate from a PTSS a sound and ground-complete equational axiomatization for strong and convex bisimilarity. The construction is based on the method of Aceto, Bloom and Vaandrager developed for non-deterministic transition system specifications. The novelty in our approach is to employ many-sorted algebras to axiomatize separately non-deterministic choice, probabilistic choice and their interaction. Furthermore, we generalize this method to axiomatize the strong and convex metric bisimulation distance of PTSS.Fil: D'argenio, Pedro Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba; ArgentinaFil: Gebler, Daniel. University Amsterdam; Países BajosFil: Lee, Matias David. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba; ArgentinaSpringer Verlag Berlín2014-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/33966D'argenio, Pedro Ruben; Gebler, Daniel; Lee, Matias David; Axiomatizing Bisimulation Equivalences and Metrics from Probabilistic SOS Rules; Springer Verlag Berlín; Lecture Notes in Computer Science; 2014; 4-2014; 289-3030302-9743CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-642-54830-7_19info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007%2F978-3-642-54830-7_19info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:44:28Zoai:ri.conicet.gov.ar:11336/33966instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:44:28.743CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Axiomatizing Bisimulation Equivalences and Metrics from Probabilistic SOS Rules
title Axiomatizing Bisimulation Equivalences and Metrics from Probabilistic SOS Rules
spellingShingle Axiomatizing Bisimulation Equivalences and Metrics from Probabilistic SOS Rules
D'argenio, Pedro Ruben
Structured Operational Semantics
Probabilistic Transition Systems
Process Algebra
Bisimulation
title_short Axiomatizing Bisimulation Equivalences and Metrics from Probabilistic SOS Rules
title_full Axiomatizing Bisimulation Equivalences and Metrics from Probabilistic SOS Rules
title_fullStr Axiomatizing Bisimulation Equivalences and Metrics from Probabilistic SOS Rules
title_full_unstemmed Axiomatizing Bisimulation Equivalences and Metrics from Probabilistic SOS Rules
title_sort Axiomatizing Bisimulation Equivalences and Metrics from Probabilistic SOS Rules
dc.creator.none.fl_str_mv D'argenio, Pedro Ruben
Gebler, Daniel
Lee, Matias David
author D'argenio, Pedro Ruben
author_facet D'argenio, Pedro Ruben
Gebler, Daniel
Lee, Matias David
author_role author
author2 Gebler, Daniel
Lee, Matias David
author2_role author
author
dc.subject.none.fl_str_mv Structured Operational Semantics
Probabilistic Transition Systems
Process Algebra
Bisimulation
topic Structured Operational Semantics
Probabilistic Transition Systems
Process Algebra
Bisimulation
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Probabilistic transition system specifications (PTSS) provide structural operational semantics for reactive probabilistic labeled transition systems. Bisimulation equivalences and bisimulation metrics are fundamental notions to describe behavioral relations and distances of states, respectively. We provide a method to generate from a PTSS a sound and ground-complete equational axiomatization for strong and convex bisimilarity. The construction is based on the method of Aceto, Bloom and Vaandrager developed for non-deterministic transition system specifications. The novelty in our approach is to employ many-sorted algebras to axiomatize separately non-deterministic choice, probabilistic choice and their interaction. Furthermore, we generalize this method to axiomatize the strong and convex metric bisimulation distance of PTSS.
Fil: D'argenio, Pedro Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba; Argentina
Fil: Gebler, Daniel. University Amsterdam; Países Bajos
Fil: Lee, Matias David. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba; Argentina
description Probabilistic transition system specifications (PTSS) provide structural operational semantics for reactive probabilistic labeled transition systems. Bisimulation equivalences and bisimulation metrics are fundamental notions to describe behavioral relations and distances of states, respectively. We provide a method to generate from a PTSS a sound and ground-complete equational axiomatization for strong and convex bisimilarity. The construction is based on the method of Aceto, Bloom and Vaandrager developed for non-deterministic transition system specifications. The novelty in our approach is to employ many-sorted algebras to axiomatize separately non-deterministic choice, probabilistic choice and their interaction. Furthermore, we generalize this method to axiomatize the strong and convex metric bisimulation distance of PTSS.
publishDate 2014
dc.date.none.fl_str_mv 2014-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/33966
D'argenio, Pedro Ruben; Gebler, Daniel; Lee, Matias David; Axiomatizing Bisimulation Equivalences and Metrics from Probabilistic SOS Rules; Springer Verlag Berlín; Lecture Notes in Computer Science; 2014; 4-2014; 289-303
0302-9743
CONICET Digital
CONICET
url http://hdl.handle.net/11336/33966
identifier_str_mv D'argenio, Pedro Ruben; Gebler, Daniel; Lee, Matias David; Axiomatizing Bisimulation Equivalences and Metrics from Probabilistic SOS Rules; Springer Verlag Berlín; Lecture Notes in Computer Science; 2014; 4-2014; 289-303
0302-9743
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-642-54830-7_19
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007%2F978-3-642-54830-7_19
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer Verlag Berlín
publisher.none.fl_str_mv Springer Verlag Berlín
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268668653731840
score 13.13397