A theory of stochastic systems part I: Stochastic automata

Autores
D'argenio, Pedro Ruben; Katoen, Joost Pieter
Año de publicación
2005
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This paper presents the theoretical underpinning of a model for symbolically representing probabilistic transition systems, an extension of labelled transition systems for the modelling of general (discrete as well as continuous or singular) probability spaces. These transition systems are particularly suited for modelling softly timed systems, real-time systems in which the time constraints are of random nature. For continuous probability spaces these transition systems are infinite by nature. Stochastic automata represent their behaviour in a finite way. This paper presents the model of stochastic automata, their semantics in terms of probabilistic transition systems, and studies several notions of bisimulation. Furthermore, the relationship of stochastic automata to generalised semi-Markov processes is established.
Fil: D'argenio, Pedro Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba; Argentina. Universiteit Twente (ut);
Fil: Katoen, Joost Pieter. Universiteit Twente (ut);
Materia
PROBABILISTIC BISIMULATION
GENERALISED SEMI-MARKOV PROCESSES
PROBABILISTIC TRANSITION SYSTEMS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/241739

id CONICETDig_814e2c19141da1992c84263d91b2644e
oai_identifier_str oai:ri.conicet.gov.ar:11336/241739
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A theory of stochastic systems part I: Stochastic automataD'argenio, Pedro RubenKatoen, Joost PieterPROBABILISTIC BISIMULATIONGENERALISED SEMI-MARKOV PROCESSESPROBABILISTIC TRANSITION SYSTEMShttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2This paper presents the theoretical underpinning of a model for symbolically representing probabilistic transition systems, an extension of labelled transition systems for the modelling of general (discrete as well as continuous or singular) probability spaces. These transition systems are particularly suited for modelling softly timed systems, real-time systems in which the time constraints are of random nature. For continuous probability spaces these transition systems are infinite by nature. Stochastic automata represent their behaviour in a finite way. This paper presents the model of stochastic automata, their semantics in terms of probabilistic transition systems, and studies several notions of bisimulation. Furthermore, the relationship of stochastic automata to generalised semi-Markov processes is established.Fil: D'argenio, Pedro Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba; Argentina. Universiteit Twente (ut);Fil: Katoen, Joost Pieter. Universiteit Twente (ut);Academic Press Inc Elsevier Science2005-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/241739D'argenio, Pedro Ruben; Katoen, Joost Pieter; A theory of stochastic systems part I: Stochastic automata; Academic Press Inc Elsevier Science; Information and Computation; 203; 1; 11-2005; 1-380890-5401CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0890540105001185info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ic.2005.07.001info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:59:16Zoai:ri.conicet.gov.ar:11336/241739instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:59:16.923CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A theory of stochastic systems part I: Stochastic automata
title A theory of stochastic systems part I: Stochastic automata
spellingShingle A theory of stochastic systems part I: Stochastic automata
D'argenio, Pedro Ruben
PROBABILISTIC BISIMULATION
GENERALISED SEMI-MARKOV PROCESSES
PROBABILISTIC TRANSITION SYSTEMS
title_short A theory of stochastic systems part I: Stochastic automata
title_full A theory of stochastic systems part I: Stochastic automata
title_fullStr A theory of stochastic systems part I: Stochastic automata
title_full_unstemmed A theory of stochastic systems part I: Stochastic automata
title_sort A theory of stochastic systems part I: Stochastic automata
dc.creator.none.fl_str_mv D'argenio, Pedro Ruben
Katoen, Joost Pieter
author D'argenio, Pedro Ruben
author_facet D'argenio, Pedro Ruben
Katoen, Joost Pieter
author_role author
author2 Katoen, Joost Pieter
author2_role author
dc.subject.none.fl_str_mv PROBABILISTIC BISIMULATION
GENERALISED SEMI-MARKOV PROCESSES
PROBABILISTIC TRANSITION SYSTEMS
topic PROBABILISTIC BISIMULATION
GENERALISED SEMI-MARKOV PROCESSES
PROBABILISTIC TRANSITION SYSTEMS
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv This paper presents the theoretical underpinning of a model for symbolically representing probabilistic transition systems, an extension of labelled transition systems for the modelling of general (discrete as well as continuous or singular) probability spaces. These transition systems are particularly suited for modelling softly timed systems, real-time systems in which the time constraints are of random nature. For continuous probability spaces these transition systems are infinite by nature. Stochastic automata represent their behaviour in a finite way. This paper presents the model of stochastic automata, their semantics in terms of probabilistic transition systems, and studies several notions of bisimulation. Furthermore, the relationship of stochastic automata to generalised semi-Markov processes is established.
Fil: D'argenio, Pedro Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba; Argentina. Universiteit Twente (ut);
Fil: Katoen, Joost Pieter. Universiteit Twente (ut);
description This paper presents the theoretical underpinning of a model for symbolically representing probabilistic transition systems, an extension of labelled transition systems for the modelling of general (discrete as well as continuous or singular) probability spaces. These transition systems are particularly suited for modelling softly timed systems, real-time systems in which the time constraints are of random nature. For continuous probability spaces these transition systems are infinite by nature. Stochastic automata represent their behaviour in a finite way. This paper presents the model of stochastic automata, their semantics in terms of probabilistic transition systems, and studies several notions of bisimulation. Furthermore, the relationship of stochastic automata to generalised semi-Markov processes is established.
publishDate 2005
dc.date.none.fl_str_mv 2005-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/241739
D'argenio, Pedro Ruben; Katoen, Joost Pieter; A theory of stochastic systems part I: Stochastic automata; Academic Press Inc Elsevier Science; Information and Computation; 203; 1; 11-2005; 1-38
0890-5401
CONICET Digital
CONICET
url http://hdl.handle.net/11336/241739
identifier_str_mv D'argenio, Pedro Ruben; Katoen, Joost Pieter; A theory of stochastic systems part I: Stochastic automata; Academic Press Inc Elsevier Science; Information and Computation; 203; 1; 11-2005; 1-38
0890-5401
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0890540105001185
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ic.2005.07.001
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269571994615808
score 13.13397