Plant identification based on leaf midrib cross-section images using fractal descriptors
- Autores
- Silva, Núbia Rosa Da; Florindo, João Batista; Gómez, María Cecilia; Rossatto, Davi Rodrigo; Kolb, Rosana Marta; Bruno, Odemir Martinez
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The correct identification of plants is a common necessity not only to researchers but also to the lay public. Recently, computational methods have been employed to facilitate this task, however, there are few studies front of the wide diversity of plants occurring in the world. This study proposes to analyse images obtained from cross-sections of leaf midrib using fractal descriptors. These descriptors are obtained from the fractal dimension of the object computed at a range of scales. In this way, they provide rich information regarding the spatial distribution of the analysed structure and, as a consequence, they measure the multiscale morphology of the object of interest. In Biology, such morphology is of great importance because it is related to evolutionary aspects and is successfully employed to characterize and discriminate among different biological structures. Here, the fractal descriptors are used to identify the species of plants based on the image of their leaves. A large number of samples are examined, being 606 leaf samples of 50 species from Brazilian flora. The results are compared to other imaging methods in the literature and demonstrate that fractal descriptors are precise and reliable in the taxonomic process of plant species identification.
Fil: Silva, Núbia Rosa Da. Universidade de Sao Paulo; Brasil
Fil: Florindo, João Batista. Universidade de Sao Paulo; Brasil
Fil: Gómez, María Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas; Argentina
Fil: Rossatto, Davi Rodrigo. Universidade Estadual Paulista. Faculty of Agriculture and Veterinary Sciences. Department of Applied Biology; Brasil
Fil: Kolb, Rosana Marta. Unesp-universidade Estadual Paulista; . Universidade Estadual Paulista. Faculty of Sciences and Letters. Department of Biological Sciences; Brasil
Fil: Bruno, Odemir Martinez. Universidade de Sao Paulo; Brasil - Materia
-
Fractal dimension
identification of plants - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/19409
Ver los metadatos del registro completo
id |
CONICETDig_a87b55c75ad44796caa833636bef4257 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/19409 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Plant identification based on leaf midrib cross-section images using fractal descriptorsSilva, Núbia Rosa DaFlorindo, João BatistaGómez, María CeciliaRossatto, Davi RodrigoKolb, Rosana MartaBruno, Odemir MartinezFractal dimensionidentification of plantshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1The correct identification of plants is a common necessity not only to researchers but also to the lay public. Recently, computational methods have been employed to facilitate this task, however, there are few studies front of the wide diversity of plants occurring in the world. This study proposes to analyse images obtained from cross-sections of leaf midrib using fractal descriptors. These descriptors are obtained from the fractal dimension of the object computed at a range of scales. In this way, they provide rich information regarding the spatial distribution of the analysed structure and, as a consequence, they measure the multiscale morphology of the object of interest. In Biology, such morphology is of great importance because it is related to evolutionary aspects and is successfully employed to characterize and discriminate among different biological structures. Here, the fractal descriptors are used to identify the species of plants based on the image of their leaves. A large number of samples are examined, being 606 leaf samples of 50 species from Brazilian flora. The results are compared to other imaging methods in the literature and demonstrate that fractal descriptors are precise and reliable in the taxonomic process of plant species identification.Fil: Silva, Núbia Rosa Da. Universidade de Sao Paulo; BrasilFil: Florindo, João Batista. Universidade de Sao Paulo; BrasilFil: Gómez, María Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas; ArgentinaFil: Rossatto, Davi Rodrigo. Universidade Estadual Paulista. Faculty of Agriculture and Veterinary Sciences. Department of Applied Biology; BrasilFil: Kolb, Rosana Marta. Unesp-universidade Estadual Paulista; . Universidade Estadual Paulista. Faculty of Sciences and Letters. Department of Biological Sciences; BrasilFil: Bruno, Odemir Martinez. Universidade de Sao Paulo; BrasilPublic Library of Science2015-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19409Silva, Núbia Rosa Da; Florindo, João Batista; Gómez, María Cecilia; Rossatto, Davi Rodrigo; Kolb, Rosana Marta; et al.; Plant identification based on leaf midrib cross-section images using fractal descriptors; Public Library of Science; Plos One; 10; 6; 6-2015; 1-14; e01300141932-6203CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0130014info:eu-repo/semantics/altIdentifier/url/http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0130014info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:42:57Zoai:ri.conicet.gov.ar:11336/19409instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:42:57.63CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Plant identification based on leaf midrib cross-section images using fractal descriptors |
title |
Plant identification based on leaf midrib cross-section images using fractal descriptors |
spellingShingle |
Plant identification based on leaf midrib cross-section images using fractal descriptors Silva, Núbia Rosa Da Fractal dimension identification of plants |
title_short |
Plant identification based on leaf midrib cross-section images using fractal descriptors |
title_full |
Plant identification based on leaf midrib cross-section images using fractal descriptors |
title_fullStr |
Plant identification based on leaf midrib cross-section images using fractal descriptors |
title_full_unstemmed |
Plant identification based on leaf midrib cross-section images using fractal descriptors |
title_sort |
Plant identification based on leaf midrib cross-section images using fractal descriptors |
dc.creator.none.fl_str_mv |
Silva, Núbia Rosa Da Florindo, João Batista Gómez, María Cecilia Rossatto, Davi Rodrigo Kolb, Rosana Marta Bruno, Odemir Martinez |
author |
Silva, Núbia Rosa Da |
author_facet |
Silva, Núbia Rosa Da Florindo, João Batista Gómez, María Cecilia Rossatto, Davi Rodrigo Kolb, Rosana Marta Bruno, Odemir Martinez |
author_role |
author |
author2 |
Florindo, João Batista Gómez, María Cecilia Rossatto, Davi Rodrigo Kolb, Rosana Marta Bruno, Odemir Martinez |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Fractal dimension identification of plants |
topic |
Fractal dimension identification of plants |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The correct identification of plants is a common necessity not only to researchers but also to the lay public. Recently, computational methods have been employed to facilitate this task, however, there are few studies front of the wide diversity of plants occurring in the world. This study proposes to analyse images obtained from cross-sections of leaf midrib using fractal descriptors. These descriptors are obtained from the fractal dimension of the object computed at a range of scales. In this way, they provide rich information regarding the spatial distribution of the analysed structure and, as a consequence, they measure the multiscale morphology of the object of interest. In Biology, such morphology is of great importance because it is related to evolutionary aspects and is successfully employed to characterize and discriminate among different biological structures. Here, the fractal descriptors are used to identify the species of plants based on the image of their leaves. A large number of samples are examined, being 606 leaf samples of 50 species from Brazilian flora. The results are compared to other imaging methods in the literature and demonstrate that fractal descriptors are precise and reliable in the taxonomic process of plant species identification. Fil: Silva, Núbia Rosa Da. Universidade de Sao Paulo; Brasil Fil: Florindo, João Batista. Universidade de Sao Paulo; Brasil Fil: Gómez, María Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas; Argentina Fil: Rossatto, Davi Rodrigo. Universidade Estadual Paulista. Faculty of Agriculture and Veterinary Sciences. Department of Applied Biology; Brasil Fil: Kolb, Rosana Marta. Unesp-universidade Estadual Paulista; . Universidade Estadual Paulista. Faculty of Sciences and Letters. Department of Biological Sciences; Brasil Fil: Bruno, Odemir Martinez. Universidade de Sao Paulo; Brasil |
description |
The correct identification of plants is a common necessity not only to researchers but also to the lay public. Recently, computational methods have been employed to facilitate this task, however, there are few studies front of the wide diversity of plants occurring in the world. This study proposes to analyse images obtained from cross-sections of leaf midrib using fractal descriptors. These descriptors are obtained from the fractal dimension of the object computed at a range of scales. In this way, they provide rich information regarding the spatial distribution of the analysed structure and, as a consequence, they measure the multiscale morphology of the object of interest. In Biology, such morphology is of great importance because it is related to evolutionary aspects and is successfully employed to characterize and discriminate among different biological structures. Here, the fractal descriptors are used to identify the species of plants based on the image of their leaves. A large number of samples are examined, being 606 leaf samples of 50 species from Brazilian flora. The results are compared to other imaging methods in the literature and demonstrate that fractal descriptors are precise and reliable in the taxonomic process of plant species identification. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/19409 Silva, Núbia Rosa Da; Florindo, João Batista; Gómez, María Cecilia; Rossatto, Davi Rodrigo; Kolb, Rosana Marta; et al.; Plant identification based on leaf midrib cross-section images using fractal descriptors; Public Library of Science; Plos One; 10; 6; 6-2015; 1-14; e0130014 1932-6203 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/19409 |
identifier_str_mv |
Silva, Núbia Rosa Da; Florindo, João Batista; Gómez, María Cecilia; Rossatto, Davi Rodrigo; Kolb, Rosana Marta; et al.; Plant identification based on leaf midrib cross-section images using fractal descriptors; Public Library of Science; Plos One; 10; 6; 6-2015; 1-14; e0130014 1932-6203 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0130014 info:eu-repo/semantics/altIdentifier/url/http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0130014 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Public Library of Science |
publisher.none.fl_str_mv |
Public Library of Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613351981711360 |
score |
13.260194 |