Border extrapolation using fractal attributes in remote sensing images
- Autores
- Cipolletti, Marina Paola; Delrieux, Claudio Augusto; Perillo, Gerardo Miguel E.; Piccolo, Maria Cintia
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In management, monitoring and rational use of natural resources the knowledge of precise and updated information is essential. Satellite images have become an attractive option for quantitative data extraction and morphologic studies, assuring a wide coverage without exerting negative environmental influence over the study area. However, the precision of such practice is limited by the spatial resolution of the sensors and the additional processing algorithms. The use of high resolution imagery (i.e., Ikonos) is very expensive for studies involving large geographic areas or requiring long term monitoring, while the use of less expensive or freely available imagery poses a limit in the geographic accuracy and physical precision that may be obtained. We developed a methodology for accurate border estimation that can be used for establishing high quality measurements with low resolution imagery. The method is based on the original theory by Richardson, taking advantage of the fractal nature of geographic features. The area of interest is downsampled at different scales and, at each scale, the border is segmented and measured. Finally, a regression of the dependence of the measured length with respect to scale is computed, which then allows for a precise extrapolation of the expected length at scales much finer than the originally available. The method is tested with both synthetic and satellite imagery, producing accurate results in both cases.
Fil: Cipolletti, Marina Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación En Ingeniería Eléctrica; Argentina. Universidad Nacional del Sur. Departamento de Ingenieria Electrica y de Computadoras; Argentina
Fil: Delrieux, Claudio Augusto. Universidad Nacional del Sur. Departamento de Ingenieria Electrica y de Computadoras; Argentina
Fil: Perillo, Gerardo Miguel E.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto Argentino de Oceanografía (i); Argentina. Universidad Nacional del Sur. Departamento de Geografía; Argentina
Fil: Piccolo, Maria Cintia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto Argentino de Oceanografía (i); Argentina. Universidad Nacional del Sur; Argentina - Materia
-
Perimeter
Extrapolation
Richardson
Fractal Dimension - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/11789
Ver los metadatos del registro completo
id |
CONICETDig_4284d879863b7c71d76f917703d70d06 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/11789 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Border extrapolation using fractal attributes in remote sensing imagesCipolletti, Marina PaolaDelrieux, Claudio AugustoPerillo, Gerardo Miguel E.Piccolo, Maria CintiaPerimeterExtrapolationRichardsonFractal Dimensionhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1In management, monitoring and rational use of natural resources the knowledge of precise and updated information is essential. Satellite images have become an attractive option for quantitative data extraction and morphologic studies, assuring a wide coverage without exerting negative environmental influence over the study area. However, the precision of such practice is limited by the spatial resolution of the sensors and the additional processing algorithms. The use of high resolution imagery (i.e., Ikonos) is very expensive for studies involving large geographic areas or requiring long term monitoring, while the use of less expensive or freely available imagery poses a limit in the geographic accuracy and physical precision that may be obtained. We developed a methodology for accurate border estimation that can be used for establishing high quality measurements with low resolution imagery. The method is based on the original theory by Richardson, taking advantage of the fractal nature of geographic features. The area of interest is downsampled at different scales and, at each scale, the border is segmented and measured. Finally, a regression of the dependence of the measured length with respect to scale is computed, which then allows for a precise extrapolation of the expected length at scales much finer than the originally available. The method is tested with both synthetic and satellite imagery, producing accurate results in both cases.Fil: Cipolletti, Marina Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación En Ingeniería Eléctrica; Argentina. Universidad Nacional del Sur. Departamento de Ingenieria Electrica y de Computadoras; ArgentinaFil: Delrieux, Claudio Augusto. Universidad Nacional del Sur. Departamento de Ingenieria Electrica y de Computadoras; ArgentinaFil: Perillo, Gerardo Miguel E.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto Argentino de Oceanografía (i); Argentina. Universidad Nacional del Sur. Departamento de Geografía; ArgentinaFil: Piccolo, Maria Cintia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto Argentino de Oceanografía (i); Argentina. Universidad Nacional del Sur; ArgentinaElsevier2014-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/11789Cipolletti, Marina Paola; Delrieux, Claudio Augusto; Perillo, Gerardo Miguel E.; Piccolo, Maria Cintia; Border extrapolation using fractal attributes in remote sensing images; Elsevier; Computers & Geosciences; 62; 1-2014; 25-340098-3004enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S009830041300246Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.cageo.2013.09.006info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:23:41Zoai:ri.conicet.gov.ar:11336/11789instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:23:41.906CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Border extrapolation using fractal attributes in remote sensing images |
title |
Border extrapolation using fractal attributes in remote sensing images |
spellingShingle |
Border extrapolation using fractal attributes in remote sensing images Cipolletti, Marina Paola Perimeter Extrapolation Richardson Fractal Dimension |
title_short |
Border extrapolation using fractal attributes in remote sensing images |
title_full |
Border extrapolation using fractal attributes in remote sensing images |
title_fullStr |
Border extrapolation using fractal attributes in remote sensing images |
title_full_unstemmed |
Border extrapolation using fractal attributes in remote sensing images |
title_sort |
Border extrapolation using fractal attributes in remote sensing images |
dc.creator.none.fl_str_mv |
Cipolletti, Marina Paola Delrieux, Claudio Augusto Perillo, Gerardo Miguel E. Piccolo, Maria Cintia |
author |
Cipolletti, Marina Paola |
author_facet |
Cipolletti, Marina Paola Delrieux, Claudio Augusto Perillo, Gerardo Miguel E. Piccolo, Maria Cintia |
author_role |
author |
author2 |
Delrieux, Claudio Augusto Perillo, Gerardo Miguel E. Piccolo, Maria Cintia |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Perimeter Extrapolation Richardson Fractal Dimension |
topic |
Perimeter Extrapolation Richardson Fractal Dimension |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In management, monitoring and rational use of natural resources the knowledge of precise and updated information is essential. Satellite images have become an attractive option for quantitative data extraction and morphologic studies, assuring a wide coverage without exerting negative environmental influence over the study area. However, the precision of such practice is limited by the spatial resolution of the sensors and the additional processing algorithms. The use of high resolution imagery (i.e., Ikonos) is very expensive for studies involving large geographic areas or requiring long term monitoring, while the use of less expensive or freely available imagery poses a limit in the geographic accuracy and physical precision that may be obtained. We developed a methodology for accurate border estimation that can be used for establishing high quality measurements with low resolution imagery. The method is based on the original theory by Richardson, taking advantage of the fractal nature of geographic features. The area of interest is downsampled at different scales and, at each scale, the border is segmented and measured. Finally, a regression of the dependence of the measured length with respect to scale is computed, which then allows for a precise extrapolation of the expected length at scales much finer than the originally available. The method is tested with both synthetic and satellite imagery, producing accurate results in both cases. Fil: Cipolletti, Marina Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación En Ingeniería Eléctrica; Argentina. Universidad Nacional del Sur. Departamento de Ingenieria Electrica y de Computadoras; Argentina Fil: Delrieux, Claudio Augusto. Universidad Nacional del Sur. Departamento de Ingenieria Electrica y de Computadoras; Argentina Fil: Perillo, Gerardo Miguel E.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto Argentino de Oceanografía (i); Argentina. Universidad Nacional del Sur. Departamento de Geografía; Argentina Fil: Piccolo, Maria Cintia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto Argentino de Oceanografía (i); Argentina. Universidad Nacional del Sur; Argentina |
description |
In management, monitoring and rational use of natural resources the knowledge of precise and updated information is essential. Satellite images have become an attractive option for quantitative data extraction and morphologic studies, assuring a wide coverage without exerting negative environmental influence over the study area. However, the precision of such practice is limited by the spatial resolution of the sensors and the additional processing algorithms. The use of high resolution imagery (i.e., Ikonos) is very expensive for studies involving large geographic areas or requiring long term monitoring, while the use of less expensive or freely available imagery poses a limit in the geographic accuracy and physical precision that may be obtained. We developed a methodology for accurate border estimation that can be used for establishing high quality measurements with low resolution imagery. The method is based on the original theory by Richardson, taking advantage of the fractal nature of geographic features. The area of interest is downsampled at different scales and, at each scale, the border is segmented and measured. Finally, a regression of the dependence of the measured length with respect to scale is computed, which then allows for a precise extrapolation of the expected length at scales much finer than the originally available. The method is tested with both synthetic and satellite imagery, producing accurate results in both cases. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/11789 Cipolletti, Marina Paola; Delrieux, Claudio Augusto; Perillo, Gerardo Miguel E.; Piccolo, Maria Cintia; Border extrapolation using fractal attributes in remote sensing images; Elsevier; Computers & Geosciences; 62; 1-2014; 25-34 0098-3004 |
url |
http://hdl.handle.net/11336/11789 |
identifier_str_mv |
Cipolletti, Marina Paola; Delrieux, Claudio Augusto; Perillo, Gerardo Miguel E.; Piccolo, Maria Cintia; Border extrapolation using fractal attributes in remote sensing images; Elsevier; Computers & Geosciences; 62; 1-2014; 25-34 0098-3004 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S009830041300246X info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cageo.2013.09.006 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842981310181670912 |
score |
12.48226 |