Deep reinforcement learning approach for MPPT control of partially shaded PV systems in Smart Grids

Autores
Avila, Luis Omar; de Paula, Mariano; Trimboli, Maximiliano Daniel; Carlucho, Ignacio
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Photovoltaic systems (PV) are having an increased importance in modern smart grids systems. Usually, in order to maximize the energy output of the PV arrays a maximum power point tracking (MPPT) algorithm is used. However, once deployed, weather conditions such as clouds can cause shades in the PV arrays affecting the dynamics of each panel differently. These conditions directly affect the available energy output of the arrays and in turn make the MPPT task extremely difficult. For these reasons, under partial shading conditions, it is necessary to have algorithms that are able to learn and adapt online to the changing state of the system. In this work we propose the use of deep reinforcement learning (DRL) techniques to address the MPPT problem of a PV array under partial shading conditions. We develop a model free RL algorithm to maximize the efficiency in MPPT control. The agent's policy is parameterized by neural networks, which take the sensory information as input and directly output the control signal. Furthermore, a PV environment under shading conditions was developed in the open source OpenAI Gym platform and is made available in an open repository. Several tests are performed, using the developed simulated environment, to test the robustness of the proposed control strategies to different climate conditions. The obtained results show the feasibility of our proposal with a successful performance with fast responses and stable behaviors. The best results for the presented methodology show that the maximum operating power point achieved has a deviation less than 1% compared to the theoretical maximum power point.
Fil: Avila, Luis Omar. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: de Paula, Mariano. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; Argentina
Fil: Trimboli, Maximiliano Daniel. Universidad Nacional de San Luis. Facultad de Ingeniería y Ciencias Agropecuarias. Laboratorio de Control Automático; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Carlucho, Ignacio. State University of Louisiana; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
DEEP RL
MPPT
OPENAI GYM
PV SYSTEMS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/136641

id CONICETDig_a8021e1cccc20d398dc34ca051bebcfd
oai_identifier_str oai:ri.conicet.gov.ar:11336/136641
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Deep reinforcement learning approach for MPPT control of partially shaded PV systems in Smart GridsAvila, Luis Omarde Paula, MarianoTrimboli, Maximiliano DanielCarlucho, IgnacioDEEP RLMPPTOPENAI GYMPV SYSTEMShttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Photovoltaic systems (PV) are having an increased importance in modern smart grids systems. Usually, in order to maximize the energy output of the PV arrays a maximum power point tracking (MPPT) algorithm is used. However, once deployed, weather conditions such as clouds can cause shades in the PV arrays affecting the dynamics of each panel differently. These conditions directly affect the available energy output of the arrays and in turn make the MPPT task extremely difficult. For these reasons, under partial shading conditions, it is necessary to have algorithms that are able to learn and adapt online to the changing state of the system. In this work we propose the use of deep reinforcement learning (DRL) techniques to address the MPPT problem of a PV array under partial shading conditions. We develop a model free RL algorithm to maximize the efficiency in MPPT control. The agent's policy is parameterized by neural networks, which take the sensory information as input and directly output the control signal. Furthermore, a PV environment under shading conditions was developed in the open source OpenAI Gym platform and is made available in an open repository. Several tests are performed, using the developed simulated environment, to test the robustness of the proposed control strategies to different climate conditions. The obtained results show the feasibility of our proposal with a successful performance with fast responses and stable behaviors. The best results for the presented methodology show that the maximum operating power point achieved has a deviation less than 1% compared to the theoretical maximum power point.Fil: Avila, Luis Omar. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: de Paula, Mariano. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; ArgentinaFil: Trimboli, Maximiliano Daniel. Universidad Nacional de San Luis. Facultad de Ingeniería y Ciencias Agropecuarias. Laboratorio de Control Automático; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Carlucho, Ignacio. State University of Louisiana; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Science2020-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/136641Avila, Luis Omar; de Paula, Mariano; Trimboli, Maximiliano Daniel; Carlucho, Ignacio; Deep reinforcement learning approach for MPPT control of partially shaded PV systems in Smart Grids; Elsevier Science; Applied Soft Computing; 97; 12-2020; 1-391568-4946CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S1568494620306499info:eu-repo/semantics/altIdentifier/doi/10.1016/j.asoc.2020.106711info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:44:06Zoai:ri.conicet.gov.ar:11336/136641instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:44:06.998CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Deep reinforcement learning approach for MPPT control of partially shaded PV systems in Smart Grids
title Deep reinforcement learning approach for MPPT control of partially shaded PV systems in Smart Grids
spellingShingle Deep reinforcement learning approach for MPPT control of partially shaded PV systems in Smart Grids
Avila, Luis Omar
DEEP RL
MPPT
OPENAI GYM
PV SYSTEMS
title_short Deep reinforcement learning approach for MPPT control of partially shaded PV systems in Smart Grids
title_full Deep reinforcement learning approach for MPPT control of partially shaded PV systems in Smart Grids
title_fullStr Deep reinforcement learning approach for MPPT control of partially shaded PV systems in Smart Grids
title_full_unstemmed Deep reinforcement learning approach for MPPT control of partially shaded PV systems in Smart Grids
title_sort Deep reinforcement learning approach for MPPT control of partially shaded PV systems in Smart Grids
dc.creator.none.fl_str_mv Avila, Luis Omar
de Paula, Mariano
Trimboli, Maximiliano Daniel
Carlucho, Ignacio
author Avila, Luis Omar
author_facet Avila, Luis Omar
de Paula, Mariano
Trimboli, Maximiliano Daniel
Carlucho, Ignacio
author_role author
author2 de Paula, Mariano
Trimboli, Maximiliano Daniel
Carlucho, Ignacio
author2_role author
author
author
dc.subject.none.fl_str_mv DEEP RL
MPPT
OPENAI GYM
PV SYSTEMS
topic DEEP RL
MPPT
OPENAI GYM
PV SYSTEMS
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Photovoltaic systems (PV) are having an increased importance in modern smart grids systems. Usually, in order to maximize the energy output of the PV arrays a maximum power point tracking (MPPT) algorithm is used. However, once deployed, weather conditions such as clouds can cause shades in the PV arrays affecting the dynamics of each panel differently. These conditions directly affect the available energy output of the arrays and in turn make the MPPT task extremely difficult. For these reasons, under partial shading conditions, it is necessary to have algorithms that are able to learn and adapt online to the changing state of the system. In this work we propose the use of deep reinforcement learning (DRL) techniques to address the MPPT problem of a PV array under partial shading conditions. We develop a model free RL algorithm to maximize the efficiency in MPPT control. The agent's policy is parameterized by neural networks, which take the sensory information as input and directly output the control signal. Furthermore, a PV environment under shading conditions was developed in the open source OpenAI Gym platform and is made available in an open repository. Several tests are performed, using the developed simulated environment, to test the robustness of the proposed control strategies to different climate conditions. The obtained results show the feasibility of our proposal with a successful performance with fast responses and stable behaviors. The best results for the presented methodology show that the maximum operating power point achieved has a deviation less than 1% compared to the theoretical maximum power point.
Fil: Avila, Luis Omar. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: de Paula, Mariano. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; Argentina
Fil: Trimboli, Maximiliano Daniel. Universidad Nacional de San Luis. Facultad de Ingeniería y Ciencias Agropecuarias. Laboratorio de Control Automático; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Carlucho, Ignacio. State University of Louisiana; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description Photovoltaic systems (PV) are having an increased importance in modern smart grids systems. Usually, in order to maximize the energy output of the PV arrays a maximum power point tracking (MPPT) algorithm is used. However, once deployed, weather conditions such as clouds can cause shades in the PV arrays affecting the dynamics of each panel differently. These conditions directly affect the available energy output of the arrays and in turn make the MPPT task extremely difficult. For these reasons, under partial shading conditions, it is necessary to have algorithms that are able to learn and adapt online to the changing state of the system. In this work we propose the use of deep reinforcement learning (DRL) techniques to address the MPPT problem of a PV array under partial shading conditions. We develop a model free RL algorithm to maximize the efficiency in MPPT control. The agent's policy is parameterized by neural networks, which take the sensory information as input and directly output the control signal. Furthermore, a PV environment under shading conditions was developed in the open source OpenAI Gym platform and is made available in an open repository. Several tests are performed, using the developed simulated environment, to test the robustness of the proposed control strategies to different climate conditions. The obtained results show the feasibility of our proposal with a successful performance with fast responses and stable behaviors. The best results for the presented methodology show that the maximum operating power point achieved has a deviation less than 1% compared to the theoretical maximum power point.
publishDate 2020
dc.date.none.fl_str_mv 2020-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/136641
Avila, Luis Omar; de Paula, Mariano; Trimboli, Maximiliano Daniel; Carlucho, Ignacio; Deep reinforcement learning approach for MPPT control of partially shaded PV systems in Smart Grids; Elsevier Science; Applied Soft Computing; 97; 12-2020; 1-39
1568-4946
CONICET Digital
CONICET
url http://hdl.handle.net/11336/136641
identifier_str_mv Avila, Luis Omar; de Paula, Mariano; Trimboli, Maximiliano Daniel; Carlucho, Ignacio; Deep reinforcement learning approach for MPPT control of partially shaded PV systems in Smart Grids; Elsevier Science; Applied Soft Computing; 97; 12-2020; 1-39
1568-4946
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S1568494620306499
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.asoc.2020.106711
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614477902774272
score 13.070432