Reinforcement Learning-Based Pricing and Incentive Strategy for Demand Response in Smart Grids
- Autores
- Salazar, Eduardo Javier; Jurado Egas, Mauro Fabricio; Samper, Mauricio Eduardo
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- International agreements support the modernization of electricity networks and renewable energy resources (RES). However, these RES affect market prices due to resource variability (e.g., solar). Among the alternatives, Demand Response (DR) is presented as a tool to improve the balance between electricity supply and demand by adapting consumption to available production. In this sense, this work focuses on developing a DR model that combines price and incentive-based demand response models (P-B and I-B) to efficiently manage consumer demand with data from a real San Juan—Argentina distribution network. In addition, a price scheme is proposed in real time and by the time of use in relation to the consumers’ influence in the peak demand of the system. The proposed schemes increase load factor and improve demand displacement compared to a demand response reference model. In addition, the proposed reinforcement learning model improves short-term and long-term price search. Finally, a description and formulation of the market where the work was implemented is presented.
Fil: Salazar, Eduardo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina
Fil: Jurado Egas, Mauro Fabricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina
Fil: Samper, Mauricio Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina - Materia
-
DEMAND COINCIDENCE FACTOR
INCENTIVE-BASED DEMAND RESPONSE
PRICE-BASED DEMAND RESPONSE
REINFORCEMENT Q-LEARNING
REPLAY MEMORY EXCHANGE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/227342
Ver los metadatos del registro completo
id |
CONICETDig_3c7cf07ada87eab4af7db462a3292e1d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/227342 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Reinforcement Learning-Based Pricing and Incentive Strategy for Demand Response in Smart GridsSalazar, Eduardo JavierJurado Egas, Mauro FabricioSamper, Mauricio EduardoDEMAND COINCIDENCE FACTORINCENTIVE-BASED DEMAND RESPONSEPRICE-BASED DEMAND RESPONSEREINFORCEMENT Q-LEARNINGREPLAY MEMORY EXCHANGEhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2International agreements support the modernization of electricity networks and renewable energy resources (RES). However, these RES affect market prices due to resource variability (e.g., solar). Among the alternatives, Demand Response (DR) is presented as a tool to improve the balance between electricity supply and demand by adapting consumption to available production. In this sense, this work focuses on developing a DR model that combines price and incentive-based demand response models (P-B and I-B) to efficiently manage consumer demand with data from a real San Juan—Argentina distribution network. In addition, a price scheme is proposed in real time and by the time of use in relation to the consumers’ influence in the peak demand of the system. The proposed schemes increase load factor and improve demand displacement compared to a demand response reference model. In addition, the proposed reinforcement learning model improves short-term and long-term price search. Finally, a description and formulation of the market where the work was implemented is presented.Fil: Salazar, Eduardo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; ArgentinaFil: Jurado Egas, Mauro Fabricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; ArgentinaFil: Samper, Mauricio Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; ArgentinaMDPI2023-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/227342Salazar, Eduardo Javier; Jurado Egas, Mauro Fabricio; Samper, Mauricio Eduardo; Reinforcement Learning-Based Pricing and Incentive Strategy for Demand Response in Smart Grids; MDPI; Energies; 16; 3; 2-2023; 1-331996-1073CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1996-1073/16/3/1466info:eu-repo/semantics/altIdentifier/doi/10.3390/en16031466info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:39:03Zoai:ri.conicet.gov.ar:11336/227342instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:39:03.726CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Reinforcement Learning-Based Pricing and Incentive Strategy for Demand Response in Smart Grids |
title |
Reinforcement Learning-Based Pricing and Incentive Strategy for Demand Response in Smart Grids |
spellingShingle |
Reinforcement Learning-Based Pricing and Incentive Strategy for Demand Response in Smart Grids Salazar, Eduardo Javier DEMAND COINCIDENCE FACTOR INCENTIVE-BASED DEMAND RESPONSE PRICE-BASED DEMAND RESPONSE REINFORCEMENT Q-LEARNING REPLAY MEMORY EXCHANGE |
title_short |
Reinforcement Learning-Based Pricing and Incentive Strategy for Demand Response in Smart Grids |
title_full |
Reinforcement Learning-Based Pricing and Incentive Strategy for Demand Response in Smart Grids |
title_fullStr |
Reinforcement Learning-Based Pricing and Incentive Strategy for Demand Response in Smart Grids |
title_full_unstemmed |
Reinforcement Learning-Based Pricing and Incentive Strategy for Demand Response in Smart Grids |
title_sort |
Reinforcement Learning-Based Pricing and Incentive Strategy for Demand Response in Smart Grids |
dc.creator.none.fl_str_mv |
Salazar, Eduardo Javier Jurado Egas, Mauro Fabricio Samper, Mauricio Eduardo |
author |
Salazar, Eduardo Javier |
author_facet |
Salazar, Eduardo Javier Jurado Egas, Mauro Fabricio Samper, Mauricio Eduardo |
author_role |
author |
author2 |
Jurado Egas, Mauro Fabricio Samper, Mauricio Eduardo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
DEMAND COINCIDENCE FACTOR INCENTIVE-BASED DEMAND RESPONSE PRICE-BASED DEMAND RESPONSE REINFORCEMENT Q-LEARNING REPLAY MEMORY EXCHANGE |
topic |
DEMAND COINCIDENCE FACTOR INCENTIVE-BASED DEMAND RESPONSE PRICE-BASED DEMAND RESPONSE REINFORCEMENT Q-LEARNING REPLAY MEMORY EXCHANGE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
International agreements support the modernization of electricity networks and renewable energy resources (RES). However, these RES affect market prices due to resource variability (e.g., solar). Among the alternatives, Demand Response (DR) is presented as a tool to improve the balance between electricity supply and demand by adapting consumption to available production. In this sense, this work focuses on developing a DR model that combines price and incentive-based demand response models (P-B and I-B) to efficiently manage consumer demand with data from a real San Juan—Argentina distribution network. In addition, a price scheme is proposed in real time and by the time of use in relation to the consumers’ influence in the peak demand of the system. The proposed schemes increase load factor and improve demand displacement compared to a demand response reference model. In addition, the proposed reinforcement learning model improves short-term and long-term price search. Finally, a description and formulation of the market where the work was implemented is presented. Fil: Salazar, Eduardo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina Fil: Jurado Egas, Mauro Fabricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina Fil: Samper, Mauricio Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina |
description |
International agreements support the modernization of electricity networks and renewable energy resources (RES). However, these RES affect market prices due to resource variability (e.g., solar). Among the alternatives, Demand Response (DR) is presented as a tool to improve the balance between electricity supply and demand by adapting consumption to available production. In this sense, this work focuses on developing a DR model that combines price and incentive-based demand response models (P-B and I-B) to efficiently manage consumer demand with data from a real San Juan—Argentina distribution network. In addition, a price scheme is proposed in real time and by the time of use in relation to the consumers’ influence in the peak demand of the system. The proposed schemes increase load factor and improve demand displacement compared to a demand response reference model. In addition, the proposed reinforcement learning model improves short-term and long-term price search. Finally, a description and formulation of the market where the work was implemented is presented. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/227342 Salazar, Eduardo Javier; Jurado Egas, Mauro Fabricio; Samper, Mauricio Eduardo; Reinforcement Learning-Based Pricing and Incentive Strategy for Demand Response in Smart Grids; MDPI; Energies; 16; 3; 2-2023; 1-33 1996-1073 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/227342 |
identifier_str_mv |
Salazar, Eduardo Javier; Jurado Egas, Mauro Fabricio; Samper, Mauricio Eduardo; Reinforcement Learning-Based Pricing and Incentive Strategy for Demand Response in Smart Grids; MDPI; Energies; 16; 3; 2-2023; 1-33 1996-1073 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1996-1073/16/3/1466 info:eu-repo/semantics/altIdentifier/doi/10.3390/en16031466 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613234733088768 |
score |
13.070432 |