Minimal matrices and the corresponding minimal curves on flag manifolds in low dimension
- Autores
- Andruchow, Esteban; Mata Lorenzo, Luis E.; Mendoza, Alberto; Recht, Lázaro; Varela, Alejandro
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In general C*-algebras, elements with minimal norm in some equivalence class are introduced and characterized. We study the set of minimal hermitian matrices, in the case where the C*-algebra consists of 3 × 3 complex matrices, and the quotient is taken by the subalgebra of diagonal matrices. We thoroughly study the set of minimal matrices particularly because of its relation to the geometric problem of finding minimal curves in flag manifolds. For the flag manifold of 'four mutually orthogonal complex lines' in C4, it is shown that there are infinitely many minimal curves joining arbitrarily close points. In the case of the flag manifold of 'three mutually orthogonal complex lines' in C3, we show that the phenomenon of multiple minimal curves joining arbitrarily close points does not occur.
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
Fil: Mata Lorenzo, Luis E.. Universidad Simón Bolivar; Venezuela
Fil: Mendoza, Alberto. Universidad Simón Bolivar; Venezuela
Fil: Recht, Lázaro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Simón Bolivar; Venezuela
Fil: Varela, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina - Materia
-
APPROXIMATION
CURVES
FLAG MANIFOLDS
MATRICES
MINIMAL - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/97240
Ver los metadatos del registro completo
id |
CONICETDig_a7d925c78644d4b0c858671cf8a16feb |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/97240 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Minimal matrices and the corresponding minimal curves on flag manifolds in low dimensionAndruchow, EstebanMata Lorenzo, Luis E.Mendoza, AlbertoRecht, LázaroVarela, AlejandroAPPROXIMATIONCURVESFLAG MANIFOLDSMATRICESMINIMALhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In general C*-algebras, elements with minimal norm in some equivalence class are introduced and characterized. We study the set of minimal hermitian matrices, in the case where the C*-algebra consists of 3 × 3 complex matrices, and the quotient is taken by the subalgebra of diagonal matrices. We thoroughly study the set of minimal matrices particularly because of its relation to the geometric problem of finding minimal curves in flag manifolds. For the flag manifold of 'four mutually orthogonal complex lines' in C4, it is shown that there are infinitely many minimal curves joining arbitrarily close points. In the case of the flag manifold of 'three mutually orthogonal complex lines' in C3, we show that the phenomenon of multiple minimal curves joining arbitrarily close points does not occur.Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaFil: Mata Lorenzo, Luis E.. Universidad Simón Bolivar; VenezuelaFil: Mendoza, Alberto. Universidad Simón Bolivar; VenezuelaFil: Recht, Lázaro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Simón Bolivar; VenezuelaFil: Varela, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaElsevier Science Inc2009-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/97240Andruchow, Esteban; Mata Lorenzo, Luis E.; Mendoza, Alberto; Recht, Lázaro; Varela, Alejandro; Minimal matrices and the corresponding minimal curves on flag manifolds in low dimension; Elsevier Science Inc; Linear Algebra and its Applications; 430; 8-9; 4-2009; 1906-19280024-3795CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2008.10.023info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0024379508005107info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:37:10Zoai:ri.conicet.gov.ar:11336/97240instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:37:10.761CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Minimal matrices and the corresponding minimal curves on flag manifolds in low dimension |
title |
Minimal matrices and the corresponding minimal curves on flag manifolds in low dimension |
spellingShingle |
Minimal matrices and the corresponding minimal curves on flag manifolds in low dimension Andruchow, Esteban APPROXIMATION CURVES FLAG MANIFOLDS MATRICES MINIMAL |
title_short |
Minimal matrices and the corresponding minimal curves on flag manifolds in low dimension |
title_full |
Minimal matrices and the corresponding minimal curves on flag manifolds in low dimension |
title_fullStr |
Minimal matrices and the corresponding minimal curves on flag manifolds in low dimension |
title_full_unstemmed |
Minimal matrices and the corresponding minimal curves on flag manifolds in low dimension |
title_sort |
Minimal matrices and the corresponding minimal curves on flag manifolds in low dimension |
dc.creator.none.fl_str_mv |
Andruchow, Esteban Mata Lorenzo, Luis E. Mendoza, Alberto Recht, Lázaro Varela, Alejandro |
author |
Andruchow, Esteban |
author_facet |
Andruchow, Esteban Mata Lorenzo, Luis E. Mendoza, Alberto Recht, Lázaro Varela, Alejandro |
author_role |
author |
author2 |
Mata Lorenzo, Luis E. Mendoza, Alberto Recht, Lázaro Varela, Alejandro |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
APPROXIMATION CURVES FLAG MANIFOLDS MATRICES MINIMAL |
topic |
APPROXIMATION CURVES FLAG MANIFOLDS MATRICES MINIMAL |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In general C*-algebras, elements with minimal norm in some equivalence class are introduced and characterized. We study the set of minimal hermitian matrices, in the case where the C*-algebra consists of 3 × 3 complex matrices, and the quotient is taken by the subalgebra of diagonal matrices. We thoroughly study the set of minimal matrices particularly because of its relation to the geometric problem of finding minimal curves in flag manifolds. For the flag manifold of 'four mutually orthogonal complex lines' in C4, it is shown that there are infinitely many minimal curves joining arbitrarily close points. In the case of the flag manifold of 'three mutually orthogonal complex lines' in C3, we show that the phenomenon of multiple minimal curves joining arbitrarily close points does not occur. Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina Fil: Mata Lorenzo, Luis E.. Universidad Simón Bolivar; Venezuela Fil: Mendoza, Alberto. Universidad Simón Bolivar; Venezuela Fil: Recht, Lázaro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Simón Bolivar; Venezuela Fil: Varela, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina |
description |
In general C*-algebras, elements with minimal norm in some equivalence class are introduced and characterized. We study the set of minimal hermitian matrices, in the case where the C*-algebra consists of 3 × 3 complex matrices, and the quotient is taken by the subalgebra of diagonal matrices. We thoroughly study the set of minimal matrices particularly because of its relation to the geometric problem of finding minimal curves in flag manifolds. For the flag manifold of 'four mutually orthogonal complex lines' in C4, it is shown that there are infinitely many minimal curves joining arbitrarily close points. In the case of the flag manifold of 'three mutually orthogonal complex lines' in C3, we show that the phenomenon of multiple minimal curves joining arbitrarily close points does not occur. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/97240 Andruchow, Esteban; Mata Lorenzo, Luis E.; Mendoza, Alberto; Recht, Lázaro; Varela, Alejandro; Minimal matrices and the corresponding minimal curves on flag manifolds in low dimension; Elsevier Science Inc; Linear Algebra and its Applications; 430; 8-9; 4-2009; 1906-1928 0024-3795 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/97240 |
identifier_str_mv |
Andruchow, Esteban; Mata Lorenzo, Luis E.; Mendoza, Alberto; Recht, Lázaro; Varela, Alejandro; Minimal matrices and the corresponding minimal curves on flag manifolds in low dimension; Elsevier Science Inc; Linear Algebra and its Applications; 430; 8-9; 4-2009; 1906-1928 0024-3795 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2008.10.023 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0024379508005107 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science Inc |
publisher.none.fl_str_mv |
Elsevier Science Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613169944723456 |
score |
13.070432 |