Prediction of cell position using single-cell transcriptomic data: an iterative procedure
- Autores
- Alonso, Andrés Mariano; Carrea, Alejandra; Diambra, Luis Anibal
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Single-cell sequencing reveals cellular heterogeneity but not cell localization. However, by combining single-cell transcriptomic data with a reference atlas of a small set of genes, it would be possible to predict the position of individual cells and reconstruct the spatial expression profile of thousands of genes reported in the single-cell study. To develop new algorithms for this purpose, the Dialogue for Reverse Engineering Assessments and Methods (DREAM) consortium organized a crowd-sourced competition known as DREAM Single Cell Transcriptomics Challenge (SCTC). In the spirit of this framework, we describe here the proposed procedures for adequate reference genes selection, and an iterative procedure to predict spatial expression profile of other genes.
Fil: Alonso, Andrés Mariano. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); Argentina
Fil: Carrea, Alejandra. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
Fil: Diambra, Luis Anibal. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina - Materia
-
SINGLE-CELL SEQUENCING
RNASEQ
GENE EXPRESSION PATTERNS
PATTERNS RECONSTRUCTION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/129011
Ver los metadatos del registro completo
id |
CONICETDig_a77e0e4534dff2d3026847d78a60f8b0 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/129011 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Prediction of cell position using single-cell transcriptomic data: an iterative procedureAlonso, Andrés MarianoCarrea, AlejandraDiambra, Luis AnibalSINGLE-CELL SEQUENCINGRNASEQGENE EXPRESSION PATTERNSPATTERNS RECONSTRUCTIONhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Single-cell sequencing reveals cellular heterogeneity but not cell localization. However, by combining single-cell transcriptomic data with a reference atlas of a small set of genes, it would be possible to predict the position of individual cells and reconstruct the spatial expression profile of thousands of genes reported in the single-cell study. To develop new algorithms for this purpose, the Dialogue for Reverse Engineering Assessments and Methods (DREAM) consortium organized a crowd-sourced competition known as DREAM Single Cell Transcriptomics Challenge (SCTC). In the spirit of this framework, we describe here the proposed procedures for adequate reference genes selection, and an iterative procedure to predict spatial expression profile of other genes.Fil: Alonso, Andrés Mariano. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); ArgentinaFil: Carrea, Alejandra. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Diambra, Luis Anibal. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaF1000 Research Ltd2019-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/129011Alonso, Andrés Mariano; Carrea, Alejandra; Diambra, Luis Anibal; Prediction of cell position using single-cell transcriptomic data: an iterative procedure; F1000 Research Ltd; F1000Research; 8; 1775; 10-2019; 1-72046-1402CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.12688/f1000research.20715.1info:eu-repo/semantics/altIdentifier/url/https://f1000research.com/articles/8-1775/v1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:08:42Zoai:ri.conicet.gov.ar:11336/129011instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:08:43.168CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Prediction of cell position using single-cell transcriptomic data: an iterative procedure |
title |
Prediction of cell position using single-cell transcriptomic data: an iterative procedure |
spellingShingle |
Prediction of cell position using single-cell transcriptomic data: an iterative procedure Alonso, Andrés Mariano SINGLE-CELL SEQUENCING RNASEQ GENE EXPRESSION PATTERNS PATTERNS RECONSTRUCTION |
title_short |
Prediction of cell position using single-cell transcriptomic data: an iterative procedure |
title_full |
Prediction of cell position using single-cell transcriptomic data: an iterative procedure |
title_fullStr |
Prediction of cell position using single-cell transcriptomic data: an iterative procedure |
title_full_unstemmed |
Prediction of cell position using single-cell transcriptomic data: an iterative procedure |
title_sort |
Prediction of cell position using single-cell transcriptomic data: an iterative procedure |
dc.creator.none.fl_str_mv |
Alonso, Andrés Mariano Carrea, Alejandra Diambra, Luis Anibal |
author |
Alonso, Andrés Mariano |
author_facet |
Alonso, Andrés Mariano Carrea, Alejandra Diambra, Luis Anibal |
author_role |
author |
author2 |
Carrea, Alejandra Diambra, Luis Anibal |
author2_role |
author author |
dc.subject.none.fl_str_mv |
SINGLE-CELL SEQUENCING RNASEQ GENE EXPRESSION PATTERNS PATTERNS RECONSTRUCTION |
topic |
SINGLE-CELL SEQUENCING RNASEQ GENE EXPRESSION PATTERNS PATTERNS RECONSTRUCTION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Single-cell sequencing reveals cellular heterogeneity but not cell localization. However, by combining single-cell transcriptomic data with a reference atlas of a small set of genes, it would be possible to predict the position of individual cells and reconstruct the spatial expression profile of thousands of genes reported in the single-cell study. To develop new algorithms for this purpose, the Dialogue for Reverse Engineering Assessments and Methods (DREAM) consortium organized a crowd-sourced competition known as DREAM Single Cell Transcriptomics Challenge (SCTC). In the spirit of this framework, we describe here the proposed procedures for adequate reference genes selection, and an iterative procedure to predict spatial expression profile of other genes. Fil: Alonso, Andrés Mariano. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); Argentina Fil: Carrea, Alejandra. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina Fil: Diambra, Luis Anibal. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina |
description |
Single-cell sequencing reveals cellular heterogeneity but not cell localization. However, by combining single-cell transcriptomic data with a reference atlas of a small set of genes, it would be possible to predict the position of individual cells and reconstruct the spatial expression profile of thousands of genes reported in the single-cell study. To develop new algorithms for this purpose, the Dialogue for Reverse Engineering Assessments and Methods (DREAM) consortium organized a crowd-sourced competition known as DREAM Single Cell Transcriptomics Challenge (SCTC). In the spirit of this framework, we describe here the proposed procedures for adequate reference genes selection, and an iterative procedure to predict spatial expression profile of other genes. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/129011 Alonso, Andrés Mariano; Carrea, Alejandra; Diambra, Luis Anibal; Prediction of cell position using single-cell transcriptomic data: an iterative procedure; F1000 Research Ltd; F1000Research; 8; 1775; 10-2019; 1-7 2046-1402 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/129011 |
identifier_str_mv |
Alonso, Andrés Mariano; Carrea, Alejandra; Diambra, Luis Anibal; Prediction of cell position using single-cell transcriptomic data: an iterative procedure; F1000 Research Ltd; F1000Research; 8; 1775; 10-2019; 1-7 2046-1402 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.12688/f1000research.20715.1 info:eu-repo/semantics/altIdentifier/url/https://f1000research.com/articles/8-1775/v1 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
F1000 Research Ltd |
publisher.none.fl_str_mv |
F1000 Research Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613957640257536 |
score |
13.070432 |