Insights into functional classification via gene co-expression networks in sunflower using public transcriptomic datasets
- Autores
- Ribone, Andrés I.; Gonzales, Sergio; Paniego, Norma; Lía, Verónica; Rivarola, Máximo
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- We present the first preliminary sunflower gene co-expression network using public transcriptome data in Helianthus annuus and show its utility in identifying and classifying uncharacterized genes involved in stress response. The locus HanXRQChr09g0248321 was identified and linked to several WRKY transcription factors in an enriched “stressed-response” module. Moreover, the homologue in Arabidopsis thaliana was shown to be differentially expressed in multiple “stress” conditions. We present our work and validate our methodology to existing knowledge and show its capability to identify/rank new candidates for crop breeding programs. Our future goal is to link genetic variation with gene networks to understand phenotypic variability in sunflower stress responses.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
Gene Co-expression Networks
RNAseq
Functional Annotation
Big Data
Sunflower - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/3.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/140689
Ver los metadatos del registro completo
id |
SEDICI_5e5a6352a6af4e1cdfcaa0e25af37779 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/140689 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Insights into functional classification via gene co-expression networks in sunflower using public transcriptomic datasetsRibone, Andrés I.Gonzales, SergioPaniego, NormaLía, VerónicaRivarola, MáximoCiencias InformáticasGene Co-expression NetworksRNAseqFunctional AnnotationBig DataSunflowerWe present the first preliminary sunflower gene co-expression network using public transcriptome data in Helianthus annuus and show its utility in identifying and classifying uncharacterized genes involved in stress response. The locus HanXRQChr09g0248321 was identified and linked to several WRKY transcription factors in an enriched “stressed-response” module. Moreover, the homologue in Arabidopsis thaliana was shown to be differentially expressed in multiple “stress” conditions. We present our work and validate our methodology to existing knowledge and show its capability to identify/rank new candidates for crop breeding programs. Our future goal is to link genetic variation with gene networks to understand phenotypic variability in sunflower stress responses.Sociedad Argentina de Informática e Investigación Operativa2021-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf104-112http://sedici.unlp.edu.ar/handle/10915/140689enginfo:eu-repo/semantics/altIdentifier/url/http://50jaiio.sadio.org.ar/pdfs/cai/CAI-15.pdfinfo:eu-repo/semantics/altIdentifier/issn/2525-0949info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/3.0/Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:35:43Zoai:sedici.unlp.edu.ar:10915/140689Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:35:44.105SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Insights into functional classification via gene co-expression networks in sunflower using public transcriptomic datasets |
title |
Insights into functional classification via gene co-expression networks in sunflower using public transcriptomic datasets |
spellingShingle |
Insights into functional classification via gene co-expression networks in sunflower using public transcriptomic datasets Ribone, Andrés I. Ciencias Informáticas Gene Co-expression Networks RNAseq Functional Annotation Big Data Sunflower |
title_short |
Insights into functional classification via gene co-expression networks in sunflower using public transcriptomic datasets |
title_full |
Insights into functional classification via gene co-expression networks in sunflower using public transcriptomic datasets |
title_fullStr |
Insights into functional classification via gene co-expression networks in sunflower using public transcriptomic datasets |
title_full_unstemmed |
Insights into functional classification via gene co-expression networks in sunflower using public transcriptomic datasets |
title_sort |
Insights into functional classification via gene co-expression networks in sunflower using public transcriptomic datasets |
dc.creator.none.fl_str_mv |
Ribone, Andrés I. Gonzales, Sergio Paniego, Norma Lía, Verónica Rivarola, Máximo |
author |
Ribone, Andrés I. |
author_facet |
Ribone, Andrés I. Gonzales, Sergio Paniego, Norma Lía, Verónica Rivarola, Máximo |
author_role |
author |
author2 |
Gonzales, Sergio Paniego, Norma Lía, Verónica Rivarola, Máximo |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Gene Co-expression Networks RNAseq Functional Annotation Big Data Sunflower |
topic |
Ciencias Informáticas Gene Co-expression Networks RNAseq Functional Annotation Big Data Sunflower |
dc.description.none.fl_txt_mv |
We present the first preliminary sunflower gene co-expression network using public transcriptome data in Helianthus annuus and show its utility in identifying and classifying uncharacterized genes involved in stress response. The locus HanXRQChr09g0248321 was identified and linked to several WRKY transcription factors in an enriched “stressed-response” module. Moreover, the homologue in Arabidopsis thaliana was shown to be differentially expressed in multiple “stress” conditions. We present our work and validate our methodology to existing knowledge and show its capability to identify/rank new candidates for crop breeding programs. Our future goal is to link genetic variation with gene networks to understand phenotypic variability in sunflower stress responses. Sociedad Argentina de Informática e Investigación Operativa |
description |
We present the first preliminary sunflower gene co-expression network using public transcriptome data in Helianthus annuus and show its utility in identifying and classifying uncharacterized genes involved in stress response. The locus HanXRQChr09g0248321 was identified and linked to several WRKY transcription factors in an enriched “stressed-response” module. Moreover, the homologue in Arabidopsis thaliana was shown to be differentially expressed in multiple “stress” conditions. We present our work and validate our methodology to existing knowledge and show its capability to identify/rank new candidates for crop breeding programs. Our future goal is to link genetic variation with gene networks to understand phenotypic variability in sunflower stress responses. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/140689 |
url |
http://sedici.unlp.edu.ar/handle/10915/140689 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://50jaiio.sadio.org.ar/pdfs/cai/CAI-15.pdf info:eu-repo/semantics/altIdentifier/issn/2525-0949 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/3.0/ Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/3.0/ Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) |
dc.format.none.fl_str_mv |
application/pdf 104-112 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616235973607424 |
score |
13.070432 |