Understanding health and disease with multidimensional single-cell methods
- Autores
- Candia, Julián Marcelo; Banavar, Jayanth R; Losert, Wolfgang
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Current efforts in the biomedical sciences and related interdisciplinary fields are focused ongaining a molecular understanding of health and disease, which is a problem of dauntingcomplexity that spans many orders of magnitude in characteristic length scales, from smallmolecules that regulate cell function to cell ensembles that form tissues and organs workingtogether as an organism. In order to uncover the molecular nature of the emergent properties of acell, it is essential to measure multiple cell components simultaneously in the same cell. In turn,cell heterogeneity requires multiple cells to be measured in order to understand health and diseasein the organism. This review summarizes current efforts towards a data-driven framework thatleverages single-cell technologies to build robust signatures of healthy and diseased phenotypes.While some approaches focus on multicolor flow cytometry data and other methods are designedto analyze high-content image-based screens, we emphasize the so-called Supercell/SVMparadigm (recently developed by the authors of this review and collaborators) as a unifiedframework that captures mesoscopic-scale emergence to build reliable phenotypes. Beyond theirspecific contributions to basic and translational biomedical research, these efforts illustrate, from alarger perspective, the powerful synergy that might be achieved from bringing together methodsand ideas from statistical physics, data mining, and mathematics to solve the most pressingproblems currently facing the life sciences.
Fil: Candia, Julián Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. University of Maryland; Estados Unidos
Fil: Banavar, Jayanth R. University of Maryland; Estados Unidos
Fil: Losert, Wolfgang. University of Maryland; Estados Unidos - Materia
-
Single-Cell Biophysics
Complexity
Flow Cytometry
Cell Imaging - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/33172
Ver los metadatos del registro completo
id |
CONICETDig_0f6eb2e5820dc1fb0f559e0d445ea202 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/33172 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Understanding health and disease with multidimensional single-cell methodsCandia, Julián MarceloBanavar, Jayanth RLosert, WolfgangSingle-Cell BiophysicsComplexityFlow CytometryCell Imaginghttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Current efforts in the biomedical sciences and related interdisciplinary fields are focused ongaining a molecular understanding of health and disease, which is a problem of dauntingcomplexity that spans many orders of magnitude in characteristic length scales, from smallmolecules that regulate cell function to cell ensembles that form tissues and organs workingtogether as an organism. In order to uncover the molecular nature of the emergent properties of acell, it is essential to measure multiple cell components simultaneously in the same cell. In turn,cell heterogeneity requires multiple cells to be measured in order to understand health and diseasein the organism. This review summarizes current efforts towards a data-driven framework thatleverages single-cell technologies to build robust signatures of healthy and diseased phenotypes.While some approaches focus on multicolor flow cytometry data and other methods are designedto analyze high-content image-based screens, we emphasize the so-called Supercell/SVMparadigm (recently developed by the authors of this review and collaborators) as a unifiedframework that captures mesoscopic-scale emergence to build reliable phenotypes. Beyond theirspecific contributions to basic and translational biomedical research, these efforts illustrate, from alarger perspective, the powerful synergy that might be achieved from bringing together methodsand ideas from statistical physics, data mining, and mathematics to solve the most pressingproblems currently facing the life sciences.Fil: Candia, Julián Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. University of Maryland; Estados UnidosFil: Banavar, Jayanth R. University of Maryland; Estados UnidosFil: Losert, Wolfgang. University of Maryland; Estados UnidosIOP Publishing2014-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/33172Candia, Julián Marcelo; Banavar, Jayanth R; Losert, Wolfgang; Understanding health and disease with multidimensional single-cell methods; IOP Publishing; Journal of Physics: Condensed Matter; 26; 7; 1-2014; 1-210953-8984CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1088/0953-8984/26/7/073102info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/0953-8984/26/7/073102/metainfo:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4020281/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:57:42Zoai:ri.conicet.gov.ar:11336/33172instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:57:42.841CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Understanding health and disease with multidimensional single-cell methods |
title |
Understanding health and disease with multidimensional single-cell methods |
spellingShingle |
Understanding health and disease with multidimensional single-cell methods Candia, Julián Marcelo Single-Cell Biophysics Complexity Flow Cytometry Cell Imaging |
title_short |
Understanding health and disease with multidimensional single-cell methods |
title_full |
Understanding health and disease with multidimensional single-cell methods |
title_fullStr |
Understanding health and disease with multidimensional single-cell methods |
title_full_unstemmed |
Understanding health and disease with multidimensional single-cell methods |
title_sort |
Understanding health and disease with multidimensional single-cell methods |
dc.creator.none.fl_str_mv |
Candia, Julián Marcelo Banavar, Jayanth R Losert, Wolfgang |
author |
Candia, Julián Marcelo |
author_facet |
Candia, Julián Marcelo Banavar, Jayanth R Losert, Wolfgang |
author_role |
author |
author2 |
Banavar, Jayanth R Losert, Wolfgang |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Single-Cell Biophysics Complexity Flow Cytometry Cell Imaging |
topic |
Single-Cell Biophysics Complexity Flow Cytometry Cell Imaging |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Current efforts in the biomedical sciences and related interdisciplinary fields are focused ongaining a molecular understanding of health and disease, which is a problem of dauntingcomplexity that spans many orders of magnitude in characteristic length scales, from smallmolecules that regulate cell function to cell ensembles that form tissues and organs workingtogether as an organism. In order to uncover the molecular nature of the emergent properties of acell, it is essential to measure multiple cell components simultaneously in the same cell. In turn,cell heterogeneity requires multiple cells to be measured in order to understand health and diseasein the organism. This review summarizes current efforts towards a data-driven framework thatleverages single-cell technologies to build robust signatures of healthy and diseased phenotypes.While some approaches focus on multicolor flow cytometry data and other methods are designedto analyze high-content image-based screens, we emphasize the so-called Supercell/SVMparadigm (recently developed by the authors of this review and collaborators) as a unifiedframework that captures mesoscopic-scale emergence to build reliable phenotypes. Beyond theirspecific contributions to basic and translational biomedical research, these efforts illustrate, from alarger perspective, the powerful synergy that might be achieved from bringing together methodsand ideas from statistical physics, data mining, and mathematics to solve the most pressingproblems currently facing the life sciences. Fil: Candia, Julián Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. University of Maryland; Estados Unidos Fil: Banavar, Jayanth R. University of Maryland; Estados Unidos Fil: Losert, Wolfgang. University of Maryland; Estados Unidos |
description |
Current efforts in the biomedical sciences and related interdisciplinary fields are focused ongaining a molecular understanding of health and disease, which is a problem of dauntingcomplexity that spans many orders of magnitude in characteristic length scales, from smallmolecules that regulate cell function to cell ensembles that form tissues and organs workingtogether as an organism. In order to uncover the molecular nature of the emergent properties of acell, it is essential to measure multiple cell components simultaneously in the same cell. In turn,cell heterogeneity requires multiple cells to be measured in order to understand health and diseasein the organism. This review summarizes current efforts towards a data-driven framework thatleverages single-cell technologies to build robust signatures of healthy and diseased phenotypes.While some approaches focus on multicolor flow cytometry data and other methods are designedto analyze high-content image-based screens, we emphasize the so-called Supercell/SVMparadigm (recently developed by the authors of this review and collaborators) as a unifiedframework that captures mesoscopic-scale emergence to build reliable phenotypes. Beyond theirspecific contributions to basic and translational biomedical research, these efforts illustrate, from alarger perspective, the powerful synergy that might be achieved from bringing together methodsand ideas from statistical physics, data mining, and mathematics to solve the most pressingproblems currently facing the life sciences. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/33172 Candia, Julián Marcelo; Banavar, Jayanth R; Losert, Wolfgang; Understanding health and disease with multidimensional single-cell methods; IOP Publishing; Journal of Physics: Condensed Matter; 26; 7; 1-2014; 1-21 0953-8984 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/33172 |
identifier_str_mv |
Candia, Julián Marcelo; Banavar, Jayanth R; Losert, Wolfgang; Understanding health and disease with multidimensional single-cell methods; IOP Publishing; Journal of Physics: Condensed Matter; 26; 7; 1-2014; 1-21 0953-8984 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1088/0953-8984/26/7/073102 info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/0953-8984/26/7/073102/meta info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4020281/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613724892037120 |
score |
13.070432 |