Prediction of cell position using single-cell transcriptomic data: an iterative procedure
- Autores
- Alonso, Andrés Mariano; Carrea, Alejandra; Diambra, Luis Aníbal
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Single-cell sequencing reveals cellular heterogeneity but not cell localization. However, by combining single-cell transcriptomic data with a reference atlas of a small set of genes, it would be possible to predict the position of individual cells and reconstruct the spatial expression profile of thousands of genes reported in the single-cell study. With the purpose of developing new algorithms, the Dialogue for Reverse Engineering Assessments and Methods (DREAM) consortium organized a crowd-sourced competition known as DREAM Single Cell Transcriptomics Challenge (SCTC). Within this context, we describe here our proposed procedures for adequate reference genes selection, and an iterative procedure to predict spatial expression profile of other genes.
Facultad de Ciencias Exactas
Centro Regional de Estudios Genómicos - Materia
-
Ciencias Exactas
Single-Cell RNA sequencing
Drosophila Embryo
Gene expression Patterns
DREAM Challenge - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/107899
Ver los metadatos del registro completo
id |
SEDICI_892489fd9677e90c33d533ed216ae6a4 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/107899 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Prediction of cell position using single-cell transcriptomic data: an iterative procedureAlonso, Andrés MarianoCarrea, AlejandraDiambra, Luis AníbalCiencias ExactasSingle-Cell RNA sequencingDrosophila EmbryoGene expression PatternsDREAM ChallengeSingle-cell sequencing reveals cellular heterogeneity but not cell localization. However, by combining single-cell transcriptomic data with a reference atlas of a small set of genes, it would be possible to predict the position of individual cells and reconstruct the spatial expression profile of thousands of genes reported in the single-cell study. With the purpose of developing new algorithms, the Dialogue for Reverse Engineering Assessments and Methods (DREAM) consortium organized a crowd-sourced competition known as DREAM Single Cell Transcriptomics Challenge (SCTC). Within this context, we describe here our proposed procedures for adequate reference genes selection, and an iterative procedure to predict spatial expression profile of other genes.Facultad de Ciencias ExactasCentro Regional de Estudios Genómicos2020info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/107899enginfo:eu-repo/semantics/altIdentifier/url/http://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC7194340&blobtype=pdfinfo:eu-repo/semantics/altIdentifier/url/https://f1000research.com/articles/8-1775/v2info:eu-repo/semantics/altIdentifier/issn/2046-1402info:eu-repo/semantics/altIdentifier/pmid/32399185info:eu-repo/semantics/altIdentifier/doi/10.12688/f1000research.20715.2info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:23:51Zoai:sedici.unlp.edu.ar:10915/107899Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:23:51.981SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Prediction of cell position using single-cell transcriptomic data: an iterative procedure |
title |
Prediction of cell position using single-cell transcriptomic data: an iterative procedure |
spellingShingle |
Prediction of cell position using single-cell transcriptomic data: an iterative procedure Alonso, Andrés Mariano Ciencias Exactas Single-Cell RNA sequencing Drosophila Embryo Gene expression Patterns DREAM Challenge |
title_short |
Prediction of cell position using single-cell transcriptomic data: an iterative procedure |
title_full |
Prediction of cell position using single-cell transcriptomic data: an iterative procedure |
title_fullStr |
Prediction of cell position using single-cell transcriptomic data: an iterative procedure |
title_full_unstemmed |
Prediction of cell position using single-cell transcriptomic data: an iterative procedure |
title_sort |
Prediction of cell position using single-cell transcriptomic data: an iterative procedure |
dc.creator.none.fl_str_mv |
Alonso, Andrés Mariano Carrea, Alejandra Diambra, Luis Aníbal |
author |
Alonso, Andrés Mariano |
author_facet |
Alonso, Andrés Mariano Carrea, Alejandra Diambra, Luis Aníbal |
author_role |
author |
author2 |
Carrea, Alejandra Diambra, Luis Aníbal |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Exactas Single-Cell RNA sequencing Drosophila Embryo Gene expression Patterns DREAM Challenge |
topic |
Ciencias Exactas Single-Cell RNA sequencing Drosophila Embryo Gene expression Patterns DREAM Challenge |
dc.description.none.fl_txt_mv |
Single-cell sequencing reveals cellular heterogeneity but not cell localization. However, by combining single-cell transcriptomic data with a reference atlas of a small set of genes, it would be possible to predict the position of individual cells and reconstruct the spatial expression profile of thousands of genes reported in the single-cell study. With the purpose of developing new algorithms, the Dialogue for Reverse Engineering Assessments and Methods (DREAM) consortium organized a crowd-sourced competition known as DREAM Single Cell Transcriptomics Challenge (SCTC). Within this context, we describe here our proposed procedures for adequate reference genes selection, and an iterative procedure to predict spatial expression profile of other genes. Facultad de Ciencias Exactas Centro Regional de Estudios Genómicos |
description |
Single-cell sequencing reveals cellular heterogeneity but not cell localization. However, by combining single-cell transcriptomic data with a reference atlas of a small set of genes, it would be possible to predict the position of individual cells and reconstruct the spatial expression profile of thousands of genes reported in the single-cell study. With the purpose of developing new algorithms, the Dialogue for Reverse Engineering Assessments and Methods (DREAM) consortium organized a crowd-sourced competition known as DREAM Single Cell Transcriptomics Challenge (SCTC). Within this context, we describe here our proposed procedures for adequate reference genes selection, and an iterative procedure to predict spatial expression profile of other genes. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/107899 |
url |
http://sedici.unlp.edu.ar/handle/10915/107899 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC7194340&blobtype=pdf info:eu-repo/semantics/altIdentifier/url/https://f1000research.com/articles/8-1775/v2 info:eu-repo/semantics/altIdentifier/issn/2046-1402 info:eu-repo/semantics/altIdentifier/pmid/32399185 info:eu-repo/semantics/altIdentifier/doi/10.12688/f1000research.20715.2 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616115105300480 |
score |
13.070432 |