A game theoretical approximation for a parabolic/elliptic system with different operators
- Autores
- Miranda, Alfredo Manuel; Rossi, Julio Daniel
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we find viscosity solutions to a coupled system composed by two equations, the first one is parabolic and driven by the infinity Laplacian while the second one is elliptic and involves the usual Laplacian. We prove that there is a two-player zero-sum game played in two different boards with different rules in each board (in the first one we play a Tug-of-War game taking the number of plays into consideration and in the second board we move at random) whose value functions converge uniformly to a viscosity solution to the PDE system.
Fil: Miranda, Alfredo Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Rossi, Julio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina - Materia
-
PARABOLIC
ELLIPTIC
VISCOSITY SOLUTION
PROBABILISTIC APPROACH - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/162769
Ver los metadatos del registro completo
id |
CONICETDig_a707398c19f7a059f29d6d6fde27e63f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/162769 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A game theoretical approximation for a parabolic/elliptic system with different operatorsMiranda, Alfredo ManuelRossi, Julio DanielPARABOLICELLIPTICVISCOSITY SOLUTIONPROBABILISTIC APPROACHhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we find viscosity solutions to a coupled system composed by two equations, the first one is parabolic and driven by the infinity Laplacian while the second one is elliptic and involves the usual Laplacian. We prove that there is a two-player zero-sum game played in two different boards with different rules in each board (in the first one we play a Tug-of-War game taking the number of plays into consideration and in the second board we move at random) whose value functions converge uniformly to a viscosity solution to the PDE system.Fil: Miranda, Alfredo Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Rossi, Julio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaAmerican Institute of Mathematical Sciences2022-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/162769Miranda, Alfredo Manuel; Rossi, Julio Daniel; A game theoretical approximation for a parabolic/elliptic system with different operators; American Institute of Mathematical Sciences; Discrete And Continuous Dynamical Systems; 2022; 1-2022; 1-321078-0947CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.aimsciences.org/article/doi/10.3934/dcds.2022034info:eu-repo/semantics/altIdentifier/doi/10.3934/dcds.2022034info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:10:16Zoai:ri.conicet.gov.ar:11336/162769instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:10:16.82CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A game theoretical approximation for a parabolic/elliptic system with different operators |
title |
A game theoretical approximation for a parabolic/elliptic system with different operators |
spellingShingle |
A game theoretical approximation for a parabolic/elliptic system with different operators Miranda, Alfredo Manuel PARABOLIC ELLIPTIC VISCOSITY SOLUTION PROBABILISTIC APPROACH |
title_short |
A game theoretical approximation for a parabolic/elliptic system with different operators |
title_full |
A game theoretical approximation for a parabolic/elliptic system with different operators |
title_fullStr |
A game theoretical approximation for a parabolic/elliptic system with different operators |
title_full_unstemmed |
A game theoretical approximation for a parabolic/elliptic system with different operators |
title_sort |
A game theoretical approximation for a parabolic/elliptic system with different operators |
dc.creator.none.fl_str_mv |
Miranda, Alfredo Manuel Rossi, Julio Daniel |
author |
Miranda, Alfredo Manuel |
author_facet |
Miranda, Alfredo Manuel Rossi, Julio Daniel |
author_role |
author |
author2 |
Rossi, Julio Daniel |
author2_role |
author |
dc.subject.none.fl_str_mv |
PARABOLIC ELLIPTIC VISCOSITY SOLUTION PROBABILISTIC APPROACH |
topic |
PARABOLIC ELLIPTIC VISCOSITY SOLUTION PROBABILISTIC APPROACH |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper we find viscosity solutions to a coupled system composed by two equations, the first one is parabolic and driven by the infinity Laplacian while the second one is elliptic and involves the usual Laplacian. We prove that there is a two-player zero-sum game played in two different boards with different rules in each board (in the first one we play a Tug-of-War game taking the number of plays into consideration and in the second board we move at random) whose value functions converge uniformly to a viscosity solution to the PDE system. Fil: Miranda, Alfredo Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina Fil: Rossi, Julio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina |
description |
In this paper we find viscosity solutions to a coupled system composed by two equations, the first one is parabolic and driven by the infinity Laplacian while the second one is elliptic and involves the usual Laplacian. We prove that there is a two-player zero-sum game played in two different boards with different rules in each board (in the first one we play a Tug-of-War game taking the number of plays into consideration and in the second board we move at random) whose value functions converge uniformly to a viscosity solution to the PDE system. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/162769 Miranda, Alfredo Manuel; Rossi, Julio Daniel; A game theoretical approximation for a parabolic/elliptic system with different operators; American Institute of Mathematical Sciences; Discrete And Continuous Dynamical Systems; 2022; 1-2022; 1-32 1078-0947 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/162769 |
identifier_str_mv |
Miranda, Alfredo Manuel; Rossi, Julio Daniel; A game theoretical approximation for a parabolic/elliptic system with different operators; American Institute of Mathematical Sciences; Discrete And Continuous Dynamical Systems; 2022; 1-2022; 1-32 1078-0947 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.aimsciences.org/article/doi/10.3934/dcds.2022034 info:eu-repo/semantics/altIdentifier/doi/10.3934/dcds.2022034 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Mathematical Sciences |
publisher.none.fl_str_mv |
American Institute of Mathematical Sciences |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980515276128256 |
score |
12.993085 |