Tug-of-War games and parabolic problems with spatial and time dependence

Autores
del Pezzo, Leandro Martin; Rossi, Julio Daniel
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we use probabilistic arguments (Tug-of-War games) to obtain existence of viscosity solutions to a parabolic problem of the form {K(x,t)(Du)ut(x,t)=12⟨D2uJ(x,t)(Du),J(x,t)(Du)(x,t)⟩u(x,t)=F(x)in ΩT,on Γ, where ΩT=Ω×(0,T]ΩT=Ω×(0,T] and ΓΓ is its parabolic boundary. This problem can be viewed as a version with spatial and time dependence of the evolution problem given by the infinity Laplacian, ut(x,t)=⟨D2u(x,t)Du|Du|(x,t),Du|Du|(x,t)⟩.
Fil: del Pezzo, Leandro Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Rossi, Julio Daniel. Universidad de Alicante. Facultad de Ciencias; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Tug-Of-War
Parabolic
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/33121

id CONICETDig_9135db8c8ec5c603cfb7683eb07d2edf
oai_identifier_str oai:ri.conicet.gov.ar:11336/33121
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Tug-of-War games and parabolic problems with spatial and time dependencedel Pezzo, Leandro MartinRossi, Julio DanielTug-Of-WarParabolichttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we use probabilistic arguments (Tug-of-War games) to obtain existence of viscosity solutions to a parabolic problem of the form {K(x,t)(Du)ut(x,t)=12⟨D2uJ(x,t)(Du),J(x,t)(Du)(x,t)⟩u(x,t)=F(x)in ΩT,on Γ, where ΩT=Ω×(0,T]ΩT=Ω×(0,T] and ΓΓ is its parabolic boundary. This problem can be viewed as a version with spatial and time dependence of the evolution problem given by the infinity Laplacian, ut(x,t)=⟨D2u(x,t)Du|Du|(x,t),Du|Du|(x,t)⟩.Fil: del Pezzo, Leandro Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rossi, Julio Daniel. Universidad de Alicante. Facultad de Ciencias; España. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaKhayyam Publishing2014info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/33121del Pezzo, Leandro Martin; Rossi, Julio Daniel; Tug-of-War games and parabolic problems with spatial and time dependence; Khayyam Publishing; Differential and Integral Equations; 27; 3-4; 2014; 269-2880893-4983CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/euclid.die/1391091366info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1208.6245info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:18:44Zoai:ri.conicet.gov.ar:11336/33121instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:18:45.259CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Tug-of-War games and parabolic problems with spatial and time dependence
title Tug-of-War games and parabolic problems with spatial and time dependence
spellingShingle Tug-of-War games and parabolic problems with spatial and time dependence
del Pezzo, Leandro Martin
Tug-Of-War
Parabolic
title_short Tug-of-War games and parabolic problems with spatial and time dependence
title_full Tug-of-War games and parabolic problems with spatial and time dependence
title_fullStr Tug-of-War games and parabolic problems with spatial and time dependence
title_full_unstemmed Tug-of-War games and parabolic problems with spatial and time dependence
title_sort Tug-of-War games and parabolic problems with spatial and time dependence
dc.creator.none.fl_str_mv del Pezzo, Leandro Martin
Rossi, Julio Daniel
author del Pezzo, Leandro Martin
author_facet del Pezzo, Leandro Martin
Rossi, Julio Daniel
author_role author
author2 Rossi, Julio Daniel
author2_role author
dc.subject.none.fl_str_mv Tug-Of-War
Parabolic
topic Tug-Of-War
Parabolic
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper we use probabilistic arguments (Tug-of-War games) to obtain existence of viscosity solutions to a parabolic problem of the form {K(x,t)(Du)ut(x,t)=12⟨D2uJ(x,t)(Du),J(x,t)(Du)(x,t)⟩u(x,t)=F(x)in ΩT,on Γ, where ΩT=Ω×(0,T]ΩT=Ω×(0,T] and ΓΓ is its parabolic boundary. This problem can be viewed as a version with spatial and time dependence of the evolution problem given by the infinity Laplacian, ut(x,t)=⟨D2u(x,t)Du|Du|(x,t),Du|Du|(x,t)⟩.
Fil: del Pezzo, Leandro Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Rossi, Julio Daniel. Universidad de Alicante. Facultad de Ciencias; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description In this paper we use probabilistic arguments (Tug-of-War games) to obtain existence of viscosity solutions to a parabolic problem of the form {K(x,t)(Du)ut(x,t)=12⟨D2uJ(x,t)(Du),J(x,t)(Du)(x,t)⟩u(x,t)=F(x)in ΩT,on Γ, where ΩT=Ω×(0,T]ΩT=Ω×(0,T] and ΓΓ is its parabolic boundary. This problem can be viewed as a version with spatial and time dependence of the evolution problem given by the infinity Laplacian, ut(x,t)=⟨D2u(x,t)Du|Du|(x,t),Du|Du|(x,t)⟩.
publishDate 2014
dc.date.none.fl_str_mv 2014
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/33121
del Pezzo, Leandro Martin; Rossi, Julio Daniel; Tug-of-War games and parabolic problems with spatial and time dependence; Khayyam Publishing; Differential and Integral Equations; 27; 3-4; 2014; 269-288
0893-4983
CONICET Digital
CONICET
url http://hdl.handle.net/11336/33121
identifier_str_mv del Pezzo, Leandro Martin; Rossi, Julio Daniel; Tug-of-War games and parabolic problems with spatial and time dependence; Khayyam Publishing; Differential and Integral Equations; 27; 3-4; 2014; 269-288
0893-4983
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/euclid.die/1391091366
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1208.6245
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Khayyam Publishing
publisher.none.fl_str_mv Khayyam Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614152363966464
score 13.070432