Tug-of-War games and parabolic problems with spatial and time dependence
- Autores
- del Pezzo, Leandro Martin; Rossi, Julio Daniel
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we use probabilistic arguments (Tug-of-War games) to obtain existence of viscosity solutions to a parabolic problem of the form {K(x,t)(Du)ut(x,t)=12⟨D2uJ(x,t)(Du),J(x,t)(Du)(x,t)⟩u(x,t)=F(x)in ΩT,on Γ, where ΩT=Ω×(0,T]ΩT=Ω×(0,T] and ΓΓ is its parabolic boundary. This problem can be viewed as a version with spatial and time dependence of the evolution problem given by the infinity Laplacian, ut(x,t)=⟨D2u(x,t)Du|Du|(x,t),Du|Du|(x,t)⟩.
Fil: del Pezzo, Leandro Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Rossi, Julio Daniel. Universidad de Alicante. Facultad de Ciencias; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Tug-Of-War
Parabolic - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/33121
Ver los metadatos del registro completo
id |
CONICETDig_9135db8c8ec5c603cfb7683eb07d2edf |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/33121 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Tug-of-War games and parabolic problems with spatial and time dependencedel Pezzo, Leandro MartinRossi, Julio DanielTug-Of-WarParabolichttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we use probabilistic arguments (Tug-of-War games) to obtain existence of viscosity solutions to a parabolic problem of the form {K(x,t)(Du)ut(x,t)=12⟨D2uJ(x,t)(Du),J(x,t)(Du)(x,t)⟩u(x,t)=F(x)in ΩT,on Γ, where ΩT=Ω×(0,T]ΩT=Ω×(0,T] and ΓΓ is its parabolic boundary. This problem can be viewed as a version with spatial and time dependence of the evolution problem given by the infinity Laplacian, ut(x,t)=⟨D2u(x,t)Du|Du|(x,t),Du|Du|(x,t)⟩.Fil: del Pezzo, Leandro Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rossi, Julio Daniel. Universidad de Alicante. Facultad de Ciencias; España. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaKhayyam Publishing2014info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/33121del Pezzo, Leandro Martin; Rossi, Julio Daniel; Tug-of-War games and parabolic problems with spatial and time dependence; Khayyam Publishing; Differential and Integral Equations; 27; 3-4; 2014; 269-2880893-4983CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/euclid.die/1391091366info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1208.6245info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:18:44Zoai:ri.conicet.gov.ar:11336/33121instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:18:45.259CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Tug-of-War games and parabolic problems with spatial and time dependence |
title |
Tug-of-War games and parabolic problems with spatial and time dependence |
spellingShingle |
Tug-of-War games and parabolic problems with spatial and time dependence del Pezzo, Leandro Martin Tug-Of-War Parabolic |
title_short |
Tug-of-War games and parabolic problems with spatial and time dependence |
title_full |
Tug-of-War games and parabolic problems with spatial and time dependence |
title_fullStr |
Tug-of-War games and parabolic problems with spatial and time dependence |
title_full_unstemmed |
Tug-of-War games and parabolic problems with spatial and time dependence |
title_sort |
Tug-of-War games and parabolic problems with spatial and time dependence |
dc.creator.none.fl_str_mv |
del Pezzo, Leandro Martin Rossi, Julio Daniel |
author |
del Pezzo, Leandro Martin |
author_facet |
del Pezzo, Leandro Martin Rossi, Julio Daniel |
author_role |
author |
author2 |
Rossi, Julio Daniel |
author2_role |
author |
dc.subject.none.fl_str_mv |
Tug-Of-War Parabolic |
topic |
Tug-Of-War Parabolic |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper we use probabilistic arguments (Tug-of-War games) to obtain existence of viscosity solutions to a parabolic problem of the form {K(x,t)(Du)ut(x,t)=12⟨D2uJ(x,t)(Du),J(x,t)(Du)(x,t)⟩u(x,t)=F(x)in ΩT,on Γ, where ΩT=Ω×(0,T]ΩT=Ω×(0,T] and ΓΓ is its parabolic boundary. This problem can be viewed as a version with spatial and time dependence of the evolution problem given by the infinity Laplacian, ut(x,t)=⟨D2u(x,t)Du|Du|(x,t),Du|Du|(x,t)⟩. Fil: del Pezzo, Leandro Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Rossi, Julio Daniel. Universidad de Alicante. Facultad de Ciencias; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
In this paper we use probabilistic arguments (Tug-of-War games) to obtain existence of viscosity solutions to a parabolic problem of the form {K(x,t)(Du)ut(x,t)=12⟨D2uJ(x,t)(Du),J(x,t)(Du)(x,t)⟩u(x,t)=F(x)in ΩT,on Γ, where ΩT=Ω×(0,T]ΩT=Ω×(0,T] and ΓΓ is its parabolic boundary. This problem can be viewed as a version with spatial and time dependence of the evolution problem given by the infinity Laplacian, ut(x,t)=⟨D2u(x,t)Du|Du|(x,t),Du|Du|(x,t)⟩. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/33121 del Pezzo, Leandro Martin; Rossi, Julio Daniel; Tug-of-War games and parabolic problems with spatial and time dependence; Khayyam Publishing; Differential and Integral Equations; 27; 3-4; 2014; 269-288 0893-4983 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/33121 |
identifier_str_mv |
del Pezzo, Leandro Martin; Rossi, Julio Daniel; Tug-of-War games and parabolic problems with spatial and time dependence; Khayyam Publishing; Differential and Integral Equations; 27; 3-4; 2014; 269-288 0893-4983 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/euclid.die/1391091366 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1208.6245 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Khayyam Publishing |
publisher.none.fl_str_mv |
Khayyam Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614152363966464 |
score |
13.070432 |