The existence of smooth solutions in q-models

Autores
Osorio Morales, Maria Juliana; Santillán, Osvaldo Pablo
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The q-models are scenarios that may explain the smallness of the cosmological constant [1]-[7]. The vacuum in these theories is presented as a self-sustainable medium and include a new degree of freedom, the q-variable, which stablish the equilibrium of the quantum vacuum. In the present work, the Cauchy formulation for these models is studied. It has been already noted that there exist some limits where these theories are described by an F(R) model, which posses a well formulated Cauchy problem. This paper shows that the Cauchy problem is well posed even not reaching this limit. By use of some mathematical theorems about second order non linear systems, it is shown that these scenarios admit a smooth solution for at least a finite time when some specific type of initial conditions are imposed. Some technical conditions of [11] play an important role in this discussion.
Fil: Osorio Morales, Maria Juliana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Santillán, Osvaldo Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Materia
ALTERNATIVE GRAVITY THEORIES
CAUCHY PROBLEM
COSMOLOGICAL CONSTANT
GLOBAL HYPERBOLIC SPACES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/117803

id CONICETDig_a692a297e2fb9dee5bd33a9ce33c1a46
oai_identifier_str oai:ri.conicet.gov.ar:11336/117803
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The existence of smooth solutions in q-modelsOsorio Morales, Maria JulianaSantillán, Osvaldo PabloALTERNATIVE GRAVITY THEORIESCAUCHY PROBLEMCOSMOLOGICAL CONSTANTGLOBAL HYPERBOLIC SPACEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The q-models are scenarios that may explain the smallness of the cosmological constant [1]-[7]. The vacuum in these theories is presented as a self-sustainable medium and include a new degree of freedom, the q-variable, which stablish the equilibrium of the quantum vacuum. In the present work, the Cauchy formulation for these models is studied. It has been already noted that there exist some limits where these theories are described by an F(R) model, which posses a well formulated Cauchy problem. This paper shows that the Cauchy problem is well posed even not reaching this limit. By use of some mathematical theorems about second order non linear systems, it is shown that these scenarios admit a smooth solution for at least a finite time when some specific type of initial conditions are imposed. Some technical conditions of [11] play an important role in this discussion.Fil: Osorio Morales, Maria Juliana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Santillán, Osvaldo Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaSpringer/Plenum Publishers2019-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/117803Osorio Morales, Maria Juliana; Santillán, Osvaldo Pablo; The existence of smooth solutions in q-models; Springer/Plenum Publishers; General Relativity And Gravitation; 51; 2; 2-2019; 1-180001-7701CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10714-019-2507-4info:eu-repo/semantics/altIdentifier/doi/10.1007/s10714-019-2507-4info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1808.07756info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:55:47Zoai:ri.conicet.gov.ar:11336/117803instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:55:47.429CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The existence of smooth solutions in q-models
title The existence of smooth solutions in q-models
spellingShingle The existence of smooth solutions in q-models
Osorio Morales, Maria Juliana
ALTERNATIVE GRAVITY THEORIES
CAUCHY PROBLEM
COSMOLOGICAL CONSTANT
GLOBAL HYPERBOLIC SPACES
title_short The existence of smooth solutions in q-models
title_full The existence of smooth solutions in q-models
title_fullStr The existence of smooth solutions in q-models
title_full_unstemmed The existence of smooth solutions in q-models
title_sort The existence of smooth solutions in q-models
dc.creator.none.fl_str_mv Osorio Morales, Maria Juliana
Santillán, Osvaldo Pablo
author Osorio Morales, Maria Juliana
author_facet Osorio Morales, Maria Juliana
Santillán, Osvaldo Pablo
author_role author
author2 Santillán, Osvaldo Pablo
author2_role author
dc.subject.none.fl_str_mv ALTERNATIVE GRAVITY THEORIES
CAUCHY PROBLEM
COSMOLOGICAL CONSTANT
GLOBAL HYPERBOLIC SPACES
topic ALTERNATIVE GRAVITY THEORIES
CAUCHY PROBLEM
COSMOLOGICAL CONSTANT
GLOBAL HYPERBOLIC SPACES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The q-models are scenarios that may explain the smallness of the cosmological constant [1]-[7]. The vacuum in these theories is presented as a self-sustainable medium and include a new degree of freedom, the q-variable, which stablish the equilibrium of the quantum vacuum. In the present work, the Cauchy formulation for these models is studied. It has been already noted that there exist some limits where these theories are described by an F(R) model, which posses a well formulated Cauchy problem. This paper shows that the Cauchy problem is well posed even not reaching this limit. By use of some mathematical theorems about second order non linear systems, it is shown that these scenarios admit a smooth solution for at least a finite time when some specific type of initial conditions are imposed. Some technical conditions of [11] play an important role in this discussion.
Fil: Osorio Morales, Maria Juliana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Santillán, Osvaldo Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
description The q-models are scenarios that may explain the smallness of the cosmological constant [1]-[7]. The vacuum in these theories is presented as a self-sustainable medium and include a new degree of freedom, the q-variable, which stablish the equilibrium of the quantum vacuum. In the present work, the Cauchy formulation for these models is studied. It has been already noted that there exist some limits where these theories are described by an F(R) model, which posses a well formulated Cauchy problem. This paper shows that the Cauchy problem is well posed even not reaching this limit. By use of some mathematical theorems about second order non linear systems, it is shown that these scenarios admit a smooth solution for at least a finite time when some specific type of initial conditions are imposed. Some technical conditions of [11] play an important role in this discussion.
publishDate 2019
dc.date.none.fl_str_mv 2019-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/117803
Osorio Morales, Maria Juliana; Santillán, Osvaldo Pablo; The existence of smooth solutions in q-models; Springer/Plenum Publishers; General Relativity And Gravitation; 51; 2; 2-2019; 1-18
0001-7701
CONICET Digital
CONICET
url http://hdl.handle.net/11336/117803
identifier_str_mv Osorio Morales, Maria Juliana; Santillán, Osvaldo Pablo; The existence of smooth solutions in q-models; Springer/Plenum Publishers; General Relativity And Gravitation; 51; 2; 2-2019; 1-18
0001-7701
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10714-019-2507-4
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10714-019-2507-4
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1808.07756
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer/Plenum Publishers
publisher.none.fl_str_mv Springer/Plenum Publishers
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269366828138496
score 13.13397