The existence of smooth solutions in q-models
- Autores
- Osorio Morales, Maria Juliana; Santillán, Osvaldo Pablo
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The q-models are scenarios that may explain the smallness of the cosmological constant [1]-[7]. The vacuum in these theories is presented as a self-sustainable medium and include a new degree of freedom, the q-variable, which stablish the equilibrium of the quantum vacuum. In the present work, the Cauchy formulation for these models is studied. It has been already noted that there exist some limits where these theories are described by an F(R) model, which posses a well formulated Cauchy problem. This paper shows that the Cauchy problem is well posed even not reaching this limit. By use of some mathematical theorems about second order non linear systems, it is shown that these scenarios admit a smooth solution for at least a finite time when some specific type of initial conditions are imposed. Some technical conditions of [11] play an important role in this discussion.
Fil: Osorio Morales, Maria Juliana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Santillán, Osvaldo Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
ALTERNATIVE GRAVITY THEORIES
CAUCHY PROBLEM
COSMOLOGICAL CONSTANT
GLOBAL HYPERBOLIC SPACES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/117803
Ver los metadatos del registro completo
id |
CONICETDig_a692a297e2fb9dee5bd33a9ce33c1a46 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/117803 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The existence of smooth solutions in q-modelsOsorio Morales, Maria JulianaSantillán, Osvaldo PabloALTERNATIVE GRAVITY THEORIESCAUCHY PROBLEMCOSMOLOGICAL CONSTANTGLOBAL HYPERBOLIC SPACEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The q-models are scenarios that may explain the smallness of the cosmological constant [1]-[7]. The vacuum in these theories is presented as a self-sustainable medium and include a new degree of freedom, the q-variable, which stablish the equilibrium of the quantum vacuum. In the present work, the Cauchy formulation for these models is studied. It has been already noted that there exist some limits where these theories are described by an F(R) model, which posses a well formulated Cauchy problem. This paper shows that the Cauchy problem is well posed even not reaching this limit. By use of some mathematical theorems about second order non linear systems, it is shown that these scenarios admit a smooth solution for at least a finite time when some specific type of initial conditions are imposed. Some technical conditions of [11] play an important role in this discussion.Fil: Osorio Morales, Maria Juliana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Santillán, Osvaldo Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaSpringer/Plenum Publishers2019-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/117803Osorio Morales, Maria Juliana; Santillán, Osvaldo Pablo; The existence of smooth solutions in q-models; Springer/Plenum Publishers; General Relativity And Gravitation; 51; 2; 2-2019; 1-180001-7701CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10714-019-2507-4info:eu-repo/semantics/altIdentifier/doi/10.1007/s10714-019-2507-4info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1808.07756info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:55:47Zoai:ri.conicet.gov.ar:11336/117803instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:55:47.429CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The existence of smooth solutions in q-models |
title |
The existence of smooth solutions in q-models |
spellingShingle |
The existence of smooth solutions in q-models Osorio Morales, Maria Juliana ALTERNATIVE GRAVITY THEORIES CAUCHY PROBLEM COSMOLOGICAL CONSTANT GLOBAL HYPERBOLIC SPACES |
title_short |
The existence of smooth solutions in q-models |
title_full |
The existence of smooth solutions in q-models |
title_fullStr |
The existence of smooth solutions in q-models |
title_full_unstemmed |
The existence of smooth solutions in q-models |
title_sort |
The existence of smooth solutions in q-models |
dc.creator.none.fl_str_mv |
Osorio Morales, Maria Juliana Santillán, Osvaldo Pablo |
author |
Osorio Morales, Maria Juliana |
author_facet |
Osorio Morales, Maria Juliana Santillán, Osvaldo Pablo |
author_role |
author |
author2 |
Santillán, Osvaldo Pablo |
author2_role |
author |
dc.subject.none.fl_str_mv |
ALTERNATIVE GRAVITY THEORIES CAUCHY PROBLEM COSMOLOGICAL CONSTANT GLOBAL HYPERBOLIC SPACES |
topic |
ALTERNATIVE GRAVITY THEORIES CAUCHY PROBLEM COSMOLOGICAL CONSTANT GLOBAL HYPERBOLIC SPACES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The q-models are scenarios that may explain the smallness of the cosmological constant [1]-[7]. The vacuum in these theories is presented as a self-sustainable medium and include a new degree of freedom, the q-variable, which stablish the equilibrium of the quantum vacuum. In the present work, the Cauchy formulation for these models is studied. It has been already noted that there exist some limits where these theories are described by an F(R) model, which posses a well formulated Cauchy problem. This paper shows that the Cauchy problem is well posed even not reaching this limit. By use of some mathematical theorems about second order non linear systems, it is shown that these scenarios admit a smooth solution for at least a finite time when some specific type of initial conditions are imposed. Some technical conditions of [11] play an important role in this discussion. Fil: Osorio Morales, Maria Juliana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Santillán, Osvaldo Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
The q-models are scenarios that may explain the smallness of the cosmological constant [1]-[7]. The vacuum in these theories is presented as a self-sustainable medium and include a new degree of freedom, the q-variable, which stablish the equilibrium of the quantum vacuum. In the present work, the Cauchy formulation for these models is studied. It has been already noted that there exist some limits where these theories are described by an F(R) model, which posses a well formulated Cauchy problem. This paper shows that the Cauchy problem is well posed even not reaching this limit. By use of some mathematical theorems about second order non linear systems, it is shown that these scenarios admit a smooth solution for at least a finite time when some specific type of initial conditions are imposed. Some technical conditions of [11] play an important role in this discussion. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/117803 Osorio Morales, Maria Juliana; Santillán, Osvaldo Pablo; The existence of smooth solutions in q-models; Springer/Plenum Publishers; General Relativity And Gravitation; 51; 2; 2-2019; 1-18 0001-7701 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/117803 |
identifier_str_mv |
Osorio Morales, Maria Juliana; Santillán, Osvaldo Pablo; The existence of smooth solutions in q-models; Springer/Plenum Publishers; General Relativity And Gravitation; 51; 2; 2-2019; 1-18 0001-7701 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10714-019-2507-4 info:eu-repo/semantics/altIdentifier/doi/10.1007/s10714-019-2507-4 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1808.07756 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer/Plenum Publishers |
publisher.none.fl_str_mv |
Springer/Plenum Publishers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269366828138496 |
score |
13.13397 |