Cosmology-informed neural networks to solve the background dynamics of the Universe
- Autores
- Chantada, Augusto T.; Landau, Susana Judith; Protopapas, Pavlos; Scoccola, Claudia Graciela; Garraffo, Cecilia
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The field of machine learning has drawn increasing interest from various other fields due to the success of its methods at solving a plethora of different problems. An application of these has been to train artificial neural networks to solve differential equations without the need of a numerical solver. This particular application offers an alternative to conventional numerical methods, with advantages such as lower memory required to store solutions, parallelization, and, in some cases, a lower overall computational cost than its numerical counterparts. In this work, we train artificial neural networks to represent a bundle of solutions of the differential equations that govern the background dynamics of the Universe for four different models. The models we have chosen are ΛCDM, the Chevallier-Polarski-Linder parametric dark energy model, a quintessence model with an exponential potential, and the Hu-Sawicki f(R) model. We use the solutions that the networks provide to perform statistical analyses to estimate the values of each model's parameters with observational data; namely, estimates of the Hubble parameter from cosmic chronometers, type Ia supernovae data from the Pantheon compilation, and measurements from baryon acousstic oscillations. The results we obtain for all models match similar estimations done in the literature using numerical solvers. In addition, we estimate the error of the solutions that the trained networks provide by comparing them with the analytical solution when there is one, or to a high-precision numerical solution when there is not. Through these estimations we find that the error of the solutions is at most ∼1% in the region of the parameter space that concerns the 95% confidence regions that we find using the data, for all models and all statistical analyses performed in this work. Some of these results are made possible by improvements to the method of solving differential equations with artificial neural networks conceived in this work.
Fil: Chantada, Augusto T.. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Landau, Susana Judith. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Protopapas, Pavlos. Harvard University. School Of Engineering And Applied Sciences.; Estados Unidos
Fil: Scoccola, Claudia Graciela. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Garraffo, Cecilia. Harvard-Smithsonian Center for Astrophysics; Estados Unidos. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina - Materia
-
alternative gravity theories
cosmological parameters
cosmology
dark energy - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/228073
Ver los metadatos del registro completo
id |
CONICETDig_311365757014fe479634bce447cb33ef |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/228073 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Cosmology-informed neural networks to solve the background dynamics of the UniverseChantada, Augusto T.Landau, Susana JudithProtopapas, PavlosScoccola, Claudia GracielaGarraffo, Ceciliaalternative gravity theoriescosmological parameterscosmologydark energyhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The field of machine learning has drawn increasing interest from various other fields due to the success of its methods at solving a plethora of different problems. An application of these has been to train artificial neural networks to solve differential equations without the need of a numerical solver. This particular application offers an alternative to conventional numerical methods, with advantages such as lower memory required to store solutions, parallelization, and, in some cases, a lower overall computational cost than its numerical counterparts. In this work, we train artificial neural networks to represent a bundle of solutions of the differential equations that govern the background dynamics of the Universe for four different models. The models we have chosen are ΛCDM, the Chevallier-Polarski-Linder parametric dark energy model, a quintessence model with an exponential potential, and the Hu-Sawicki f(R) model. We use the solutions that the networks provide to perform statistical analyses to estimate the values of each model's parameters with observational data; namely, estimates of the Hubble parameter from cosmic chronometers, type Ia supernovae data from the Pantheon compilation, and measurements from baryon acousstic oscillations. The results we obtain for all models match similar estimations done in the literature using numerical solvers. In addition, we estimate the error of the solutions that the trained networks provide by comparing them with the analytical solution when there is one, or to a high-precision numerical solution when there is not. Through these estimations we find that the error of the solutions is at most ∼1% in the region of the parameter space that concerns the 95% confidence regions that we find using the data, for all models and all statistical analyses performed in this work. Some of these results are made possible by improvements to the method of solving differential equations with artificial neural networks conceived in this work.Fil: Chantada, Augusto T.. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Landau, Susana Judith. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Protopapas, Pavlos. Harvard University. School Of Engineering And Applied Sciences.; Estados UnidosFil: Scoccola, Claudia Graciela. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Garraffo, Cecilia. Harvard-Smithsonian Center for Astrophysics; Estados Unidos. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaAmerican Physical Society2023-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/228073Chantada, Augusto T.; Landau, Susana Judith; Protopapas, Pavlos; Scoccola, Claudia Graciela; Garraffo, Cecilia; Cosmology-informed neural networks to solve the background dynamics of the Universe; American Physical Society; Physical Review D; 107; 6; 3-2023; 1-282470-00102470-0029CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevD.107.063523info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.107.063523info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:59:04Zoai:ri.conicet.gov.ar:11336/228073instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:59:05.13CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Cosmology-informed neural networks to solve the background dynamics of the Universe |
title |
Cosmology-informed neural networks to solve the background dynamics of the Universe |
spellingShingle |
Cosmology-informed neural networks to solve the background dynamics of the Universe Chantada, Augusto T. alternative gravity theories cosmological parameters cosmology dark energy |
title_short |
Cosmology-informed neural networks to solve the background dynamics of the Universe |
title_full |
Cosmology-informed neural networks to solve the background dynamics of the Universe |
title_fullStr |
Cosmology-informed neural networks to solve the background dynamics of the Universe |
title_full_unstemmed |
Cosmology-informed neural networks to solve the background dynamics of the Universe |
title_sort |
Cosmology-informed neural networks to solve the background dynamics of the Universe |
dc.creator.none.fl_str_mv |
Chantada, Augusto T. Landau, Susana Judith Protopapas, Pavlos Scoccola, Claudia Graciela Garraffo, Cecilia |
author |
Chantada, Augusto T. |
author_facet |
Chantada, Augusto T. Landau, Susana Judith Protopapas, Pavlos Scoccola, Claudia Graciela Garraffo, Cecilia |
author_role |
author |
author2 |
Landau, Susana Judith Protopapas, Pavlos Scoccola, Claudia Graciela Garraffo, Cecilia |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
alternative gravity theories cosmological parameters cosmology dark energy |
topic |
alternative gravity theories cosmological parameters cosmology dark energy |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The field of machine learning has drawn increasing interest from various other fields due to the success of its methods at solving a plethora of different problems. An application of these has been to train artificial neural networks to solve differential equations without the need of a numerical solver. This particular application offers an alternative to conventional numerical methods, with advantages such as lower memory required to store solutions, parallelization, and, in some cases, a lower overall computational cost than its numerical counterparts. In this work, we train artificial neural networks to represent a bundle of solutions of the differential equations that govern the background dynamics of the Universe for four different models. The models we have chosen are ΛCDM, the Chevallier-Polarski-Linder parametric dark energy model, a quintessence model with an exponential potential, and the Hu-Sawicki f(R) model. We use the solutions that the networks provide to perform statistical analyses to estimate the values of each model's parameters with observational data; namely, estimates of the Hubble parameter from cosmic chronometers, type Ia supernovae data from the Pantheon compilation, and measurements from baryon acousstic oscillations. The results we obtain for all models match similar estimations done in the literature using numerical solvers. In addition, we estimate the error of the solutions that the trained networks provide by comparing them with the analytical solution when there is one, or to a high-precision numerical solution when there is not. Through these estimations we find that the error of the solutions is at most ∼1% in the region of the parameter space that concerns the 95% confidence regions that we find using the data, for all models and all statistical analyses performed in this work. Some of these results are made possible by improvements to the method of solving differential equations with artificial neural networks conceived in this work. Fil: Chantada, Augusto T.. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina Fil: Landau, Susana Judith. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Protopapas, Pavlos. Harvard University. School Of Engineering And Applied Sciences.; Estados Unidos Fil: Scoccola, Claudia Graciela. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Garraffo, Cecilia. Harvard-Smithsonian Center for Astrophysics; Estados Unidos. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina |
description |
The field of machine learning has drawn increasing interest from various other fields due to the success of its methods at solving a plethora of different problems. An application of these has been to train artificial neural networks to solve differential equations without the need of a numerical solver. This particular application offers an alternative to conventional numerical methods, with advantages such as lower memory required to store solutions, parallelization, and, in some cases, a lower overall computational cost than its numerical counterparts. In this work, we train artificial neural networks to represent a bundle of solutions of the differential equations that govern the background dynamics of the Universe for four different models. The models we have chosen are ΛCDM, the Chevallier-Polarski-Linder parametric dark energy model, a quintessence model with an exponential potential, and the Hu-Sawicki f(R) model. We use the solutions that the networks provide to perform statistical analyses to estimate the values of each model's parameters with observational data; namely, estimates of the Hubble parameter from cosmic chronometers, type Ia supernovae data from the Pantheon compilation, and measurements from baryon acousstic oscillations. The results we obtain for all models match similar estimations done in the literature using numerical solvers. In addition, we estimate the error of the solutions that the trained networks provide by comparing them with the analytical solution when there is one, or to a high-precision numerical solution when there is not. Through these estimations we find that the error of the solutions is at most ∼1% in the region of the parameter space that concerns the 95% confidence regions that we find using the data, for all models and all statistical analyses performed in this work. Some of these results are made possible by improvements to the method of solving differential equations with artificial neural networks conceived in this work. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/228073 Chantada, Augusto T.; Landau, Susana Judith; Protopapas, Pavlos; Scoccola, Claudia Graciela; Garraffo, Cecilia; Cosmology-informed neural networks to solve the background dynamics of the Universe; American Physical Society; Physical Review D; 107; 6; 3-2023; 1-28 2470-0010 2470-0029 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/228073 |
identifier_str_mv |
Chantada, Augusto T.; Landau, Susana Judith; Protopapas, Pavlos; Scoccola, Claudia Graciela; Garraffo, Cecilia; Cosmology-informed neural networks to solve the background dynamics of the Universe; American Physical Society; Physical Review D; 107; 6; 3-2023; 1-28 2470-0010 2470-0029 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevD.107.063523 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.107.063523 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269559850008576 |
score |
13.13397 |