Adsorción de sustancias de uso farmacéutico en sistemas acuosos utilizando materiales carbonosos
- Autores
- Onaga Medina, Florencia Micaela; Avena, Marcelo Javier; Parolo, Maria Eugenia
- Año de publicación
- 2021
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- El presente trabajo se enfoca en el empleo de un material nanoparticulado obtenido por oxidación química de un grafito de fuente natural (Gr), aplicando el método de Tour1, para la remoción por adsorción de cafeína (CF) de matrices acuosas. A fin de optimizar su separación mediante la aplicación de un campo magnético, el material así obtenido (GO) fue también magnetizado con nanopartículas de magnetita (Fe3O4)2. Se mezclaron en diferentes proporciones para obtener tres nanomateriales magnéticos (GO_MAG1, GO_MAG2 y GO_MAG3), que poseen las tres siguientes relaciones de masas de GO: Fe3O4, respectivamente: 1:5; 1:2,5 y 1:0,5. Entre los ensayos de caracterización realizados, los diagramas de DRX evidencian modificaciones en la estructura del Gr luego de la oxidación. Sin embargo, las áreas superficiales BET tanto del Gr como del GO no sufrieron modificaciones producto del tratamiento oxidativo, obteniéndose valores de 4,57 y 5,36 m2 g-1, respectivamente. La eficiencia en la oxidación del material pudo demostrarse a partir de diferentes técnicas de caracterización. Mediante espectroscopia IR se detectaron grupos funcionales oxigenados presentes en GO: -OH (3430 cm-1); C=O (1716 cm-1); C=C (1576 cm-1); C-OH (1356 cm-1); C-O-C (1173 cm-1). En el caso de los materiales magnetizados se observaron bandas de absorción IR de Fe-O (575 cm-1) correspondientes a la magnetita incorporada. Los resultados de TGA también aportaron evidencias respecto de la presencia de grupos oxigenados en el GO. En dicho material se identificaron tres etapas: en la primera se eliminó agua y grupos oxigenados más lábiles, luego los grupos oxigenados más estables y por último la degradación final con una pérdida de masa de 45% entre 450-550ºC. En cambio, en el Gr se confirma su alta estabilidad térmica cuya descomposición comienza a los 500ºC, perdiendo alrededor del 97% de masa al alcanzar los 800ºC. A su vez, las determinaciones de los potenciales z tanto del Gr y GO, mostraron valores negativos en el intervalo de pH analizado (2-11), siendo los mayores potenciales los correspondientes al GO. Todos estos resultados permiten verificar oxidación del Gr. En lo que respecta a la adsorción de CF, la capacidad de adsorción a pH 5 y 22±1ºC de Gr fue superada ampliamente por el material oxidado GO, alcanzando valores de 34,12 y 80,45 mg g-1 respectivamente. Sin embargo, paras las tres magnetizaciones realizadas no se logró alcanzar valores semejantes al de GO: 19,06 mg g-1 (GO_MAG3) > 6,05 mg g-1 (GO_MAG2) > 4,96 mg g-1 (GO_MAG1), en todos los casos trabajando con concentraciones de sólido de 500 mg L-1. Las diferencias en las capacidades de adsorción de CF para el adsorbente GO pueden atribuirse principalmente a la interacción de dicha molécula con los grupos oxigenados generados por la oxidación. Así también, los ensayos de adsorción realizados con los materiales magnetizados pueden sugerir que la Fe3O4 podría ocupar algunos sitios activos de los materiales oxidados, disminuyendo así la posibilidad de presentar interacciones con la CF.
Fil: Onaga Medina, Florencia Micaela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia. Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue. Laboratorio de Investigaciones Bioquímicas y Químicas del Ambiente | Universidad Nacional del Comahue. Facultad de Ciencias Agrarias. Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue. Laboratorio de Investigaciones Bioquímicas y Químicas del Ambiente; Argentina
Fil: Avena, Marcelo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
Fil: Parolo, Maria Eugenia. Universidad Nacional del Comahue; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia. Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue. Laboratorio de Investigaciones Bioquímicas y Químicas del Ambiente | Universidad Nacional del Comahue. Facultad de Ciencias Agrarias. Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue. Laboratorio de Investigaciones Bioquímicas y Químicas del Ambiente; Argentina
XXII Congreso Argentino de Fisicoquímica y Química Inorgánica
La Plata
Argentina
Universidad Nacional de la Plata - Materia
-
ADSORCIÓN
CARBÓN ACTIVADO
CONTAMINANTES
EMERGENTES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/219304
Ver los metadatos del registro completo
id |
CONICETDig_a5b3e4dd334e75037c89a91be8387c3f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/219304 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Adsorción de sustancias de uso farmacéutico en sistemas acuosos utilizando materiales carbonososOnaga Medina, Florencia MicaelaAvena, Marcelo JavierParolo, Maria EugeniaADSORCIÓNCARBÓN ACTIVADOCONTAMINANTESEMERGENTEShttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1El presente trabajo se enfoca en el empleo de un material nanoparticulado obtenido por oxidación química de un grafito de fuente natural (Gr), aplicando el método de Tour1, para la remoción por adsorción de cafeína (CF) de matrices acuosas. A fin de optimizar su separación mediante la aplicación de un campo magnético, el material así obtenido (GO) fue también magnetizado con nanopartículas de magnetita (Fe3O4)2. Se mezclaron en diferentes proporciones para obtener tres nanomateriales magnéticos (GO_MAG1, GO_MAG2 y GO_MAG3), que poseen las tres siguientes relaciones de masas de GO: Fe3O4, respectivamente: 1:5; 1:2,5 y 1:0,5. Entre los ensayos de caracterización realizados, los diagramas de DRX evidencian modificaciones en la estructura del Gr luego de la oxidación. Sin embargo, las áreas superficiales BET tanto del Gr como del GO no sufrieron modificaciones producto del tratamiento oxidativo, obteniéndose valores de 4,57 y 5,36 m2 g-1, respectivamente. La eficiencia en la oxidación del material pudo demostrarse a partir de diferentes técnicas de caracterización. Mediante espectroscopia IR se detectaron grupos funcionales oxigenados presentes en GO: -OH (3430 cm-1); C=O (1716 cm-1); C=C (1576 cm-1); C-OH (1356 cm-1); C-O-C (1173 cm-1). En el caso de los materiales magnetizados se observaron bandas de absorción IR de Fe-O (575 cm-1) correspondientes a la magnetita incorporada. Los resultados de TGA también aportaron evidencias respecto de la presencia de grupos oxigenados en el GO. En dicho material se identificaron tres etapas: en la primera se eliminó agua y grupos oxigenados más lábiles, luego los grupos oxigenados más estables y por último la degradación final con una pérdida de masa de 45% entre 450-550ºC. En cambio, en el Gr se confirma su alta estabilidad térmica cuya descomposición comienza a los 500ºC, perdiendo alrededor del 97% de masa al alcanzar los 800ºC. A su vez, las determinaciones de los potenciales z tanto del Gr y GO, mostraron valores negativos en el intervalo de pH analizado (2-11), siendo los mayores potenciales los correspondientes al GO. Todos estos resultados permiten verificar oxidación del Gr. En lo que respecta a la adsorción de CF, la capacidad de adsorción a pH 5 y 22±1ºC de Gr fue superada ampliamente por el material oxidado GO, alcanzando valores de 34,12 y 80,45 mg g-1 respectivamente. Sin embargo, paras las tres magnetizaciones realizadas no se logró alcanzar valores semejantes al de GO: 19,06 mg g-1 (GO_MAG3) > 6,05 mg g-1 (GO_MAG2) > 4,96 mg g-1 (GO_MAG1), en todos los casos trabajando con concentraciones de sólido de 500 mg L-1. Las diferencias en las capacidades de adsorción de CF para el adsorbente GO pueden atribuirse principalmente a la interacción de dicha molécula con los grupos oxigenados generados por la oxidación. Así también, los ensayos de adsorción realizados con los materiales magnetizados pueden sugerir que la Fe3O4 podría ocupar algunos sitios activos de los materiales oxidados, disminuyendo así la posibilidad de presentar interacciones con la CF.Fil: Onaga Medina, Florencia Micaela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia. Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue. Laboratorio de Investigaciones Bioquímicas y Químicas del Ambiente | Universidad Nacional del Comahue. Facultad de Ciencias Agrarias. Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue. Laboratorio de Investigaciones Bioquímicas y Químicas del Ambiente; ArgentinaFil: Avena, Marcelo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Parolo, Maria Eugenia. Universidad Nacional del Comahue; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia. Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue. Laboratorio de Investigaciones Bioquímicas y Químicas del Ambiente | Universidad Nacional del Comahue. Facultad de Ciencias Agrarias. Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue. Laboratorio de Investigaciones Bioquímicas y Químicas del Ambiente; ArgentinaXXII Congreso Argentino de Fisicoquímica y Química InorgánicaLa PlataArgentinaUniversidad Nacional de la PlataUniversidad Nacional de La Plata. Facultad de IngenieríaBadenes, Maria Paula2021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectCongresoBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/vnd.openxmlformats-officedocument.wordprocessingml.documentapplication/pdfhttp://hdl.handle.net/11336/219304Adsorción de sustancias de uso farmacéutico en sistemas acuosos utilizando materiales carbonosos; XXII Congreso Argentino de Fisicoquímica y Química Inorgánica; La Plata; Argentina; 2021; 183-183978-950-34-1999-1CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/url/https://congresos.unlp.edu.ar/xxiicafqi/?page_id=2218Nacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:51:59Zoai:ri.conicet.gov.ar:11336/219304instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:52:00.15CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Adsorción de sustancias de uso farmacéutico en sistemas acuosos utilizando materiales carbonosos |
title |
Adsorción de sustancias de uso farmacéutico en sistemas acuosos utilizando materiales carbonosos |
spellingShingle |
Adsorción de sustancias de uso farmacéutico en sistemas acuosos utilizando materiales carbonosos Onaga Medina, Florencia Micaela ADSORCIÓN CARBÓN ACTIVADO CONTAMINANTES EMERGENTES |
title_short |
Adsorción de sustancias de uso farmacéutico en sistemas acuosos utilizando materiales carbonosos |
title_full |
Adsorción de sustancias de uso farmacéutico en sistemas acuosos utilizando materiales carbonosos |
title_fullStr |
Adsorción de sustancias de uso farmacéutico en sistemas acuosos utilizando materiales carbonosos |
title_full_unstemmed |
Adsorción de sustancias de uso farmacéutico en sistemas acuosos utilizando materiales carbonosos |
title_sort |
Adsorción de sustancias de uso farmacéutico en sistemas acuosos utilizando materiales carbonosos |
dc.creator.none.fl_str_mv |
Onaga Medina, Florencia Micaela Avena, Marcelo Javier Parolo, Maria Eugenia |
author |
Onaga Medina, Florencia Micaela |
author_facet |
Onaga Medina, Florencia Micaela Avena, Marcelo Javier Parolo, Maria Eugenia |
author_role |
author |
author2 |
Avena, Marcelo Javier Parolo, Maria Eugenia |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Badenes, Maria Paula |
dc.subject.none.fl_str_mv |
ADSORCIÓN CARBÓN ACTIVADO CONTAMINANTES EMERGENTES |
topic |
ADSORCIÓN CARBÓN ACTIVADO CONTAMINANTES EMERGENTES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
El presente trabajo se enfoca en el empleo de un material nanoparticulado obtenido por oxidación química de un grafito de fuente natural (Gr), aplicando el método de Tour1, para la remoción por adsorción de cafeína (CF) de matrices acuosas. A fin de optimizar su separación mediante la aplicación de un campo magnético, el material así obtenido (GO) fue también magnetizado con nanopartículas de magnetita (Fe3O4)2. Se mezclaron en diferentes proporciones para obtener tres nanomateriales magnéticos (GO_MAG1, GO_MAG2 y GO_MAG3), que poseen las tres siguientes relaciones de masas de GO: Fe3O4, respectivamente: 1:5; 1:2,5 y 1:0,5. Entre los ensayos de caracterización realizados, los diagramas de DRX evidencian modificaciones en la estructura del Gr luego de la oxidación. Sin embargo, las áreas superficiales BET tanto del Gr como del GO no sufrieron modificaciones producto del tratamiento oxidativo, obteniéndose valores de 4,57 y 5,36 m2 g-1, respectivamente. La eficiencia en la oxidación del material pudo demostrarse a partir de diferentes técnicas de caracterización. Mediante espectroscopia IR se detectaron grupos funcionales oxigenados presentes en GO: -OH (3430 cm-1); C=O (1716 cm-1); C=C (1576 cm-1); C-OH (1356 cm-1); C-O-C (1173 cm-1). En el caso de los materiales magnetizados se observaron bandas de absorción IR de Fe-O (575 cm-1) correspondientes a la magnetita incorporada. Los resultados de TGA también aportaron evidencias respecto de la presencia de grupos oxigenados en el GO. En dicho material se identificaron tres etapas: en la primera se eliminó agua y grupos oxigenados más lábiles, luego los grupos oxigenados más estables y por último la degradación final con una pérdida de masa de 45% entre 450-550ºC. En cambio, en el Gr se confirma su alta estabilidad térmica cuya descomposición comienza a los 500ºC, perdiendo alrededor del 97% de masa al alcanzar los 800ºC. A su vez, las determinaciones de los potenciales z tanto del Gr y GO, mostraron valores negativos en el intervalo de pH analizado (2-11), siendo los mayores potenciales los correspondientes al GO. Todos estos resultados permiten verificar oxidación del Gr. En lo que respecta a la adsorción de CF, la capacidad de adsorción a pH 5 y 22±1ºC de Gr fue superada ampliamente por el material oxidado GO, alcanzando valores de 34,12 y 80,45 mg g-1 respectivamente. Sin embargo, paras las tres magnetizaciones realizadas no se logró alcanzar valores semejantes al de GO: 19,06 mg g-1 (GO_MAG3) > 6,05 mg g-1 (GO_MAG2) > 4,96 mg g-1 (GO_MAG1), en todos los casos trabajando con concentraciones de sólido de 500 mg L-1. Las diferencias en las capacidades de adsorción de CF para el adsorbente GO pueden atribuirse principalmente a la interacción de dicha molécula con los grupos oxigenados generados por la oxidación. Así también, los ensayos de adsorción realizados con los materiales magnetizados pueden sugerir que la Fe3O4 podría ocupar algunos sitios activos de los materiales oxidados, disminuyendo así la posibilidad de presentar interacciones con la CF. Fil: Onaga Medina, Florencia Micaela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia. Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue. Laboratorio de Investigaciones Bioquímicas y Químicas del Ambiente | Universidad Nacional del Comahue. Facultad de Ciencias Agrarias. Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue. Laboratorio de Investigaciones Bioquímicas y Químicas del Ambiente; Argentina Fil: Avena, Marcelo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina Fil: Parolo, Maria Eugenia. Universidad Nacional del Comahue; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia. Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue. Laboratorio de Investigaciones Bioquímicas y Químicas del Ambiente | Universidad Nacional del Comahue. Facultad de Ciencias Agrarias. Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue. Laboratorio de Investigaciones Bioquímicas y Químicas del Ambiente; Argentina XXII Congreso Argentino de Fisicoquímica y Química Inorgánica La Plata Argentina Universidad Nacional de la Plata |
description |
El presente trabajo se enfoca en el empleo de un material nanoparticulado obtenido por oxidación química de un grafito de fuente natural (Gr), aplicando el método de Tour1, para la remoción por adsorción de cafeína (CF) de matrices acuosas. A fin de optimizar su separación mediante la aplicación de un campo magnético, el material así obtenido (GO) fue también magnetizado con nanopartículas de magnetita (Fe3O4)2. Se mezclaron en diferentes proporciones para obtener tres nanomateriales magnéticos (GO_MAG1, GO_MAG2 y GO_MAG3), que poseen las tres siguientes relaciones de masas de GO: Fe3O4, respectivamente: 1:5; 1:2,5 y 1:0,5. Entre los ensayos de caracterización realizados, los diagramas de DRX evidencian modificaciones en la estructura del Gr luego de la oxidación. Sin embargo, las áreas superficiales BET tanto del Gr como del GO no sufrieron modificaciones producto del tratamiento oxidativo, obteniéndose valores de 4,57 y 5,36 m2 g-1, respectivamente. La eficiencia en la oxidación del material pudo demostrarse a partir de diferentes técnicas de caracterización. Mediante espectroscopia IR se detectaron grupos funcionales oxigenados presentes en GO: -OH (3430 cm-1); C=O (1716 cm-1); C=C (1576 cm-1); C-OH (1356 cm-1); C-O-C (1173 cm-1). En el caso de los materiales magnetizados se observaron bandas de absorción IR de Fe-O (575 cm-1) correspondientes a la magnetita incorporada. Los resultados de TGA también aportaron evidencias respecto de la presencia de grupos oxigenados en el GO. En dicho material se identificaron tres etapas: en la primera se eliminó agua y grupos oxigenados más lábiles, luego los grupos oxigenados más estables y por último la degradación final con una pérdida de masa de 45% entre 450-550ºC. En cambio, en el Gr se confirma su alta estabilidad térmica cuya descomposición comienza a los 500ºC, perdiendo alrededor del 97% de masa al alcanzar los 800ºC. A su vez, las determinaciones de los potenciales z tanto del Gr y GO, mostraron valores negativos en el intervalo de pH analizado (2-11), siendo los mayores potenciales los correspondientes al GO. Todos estos resultados permiten verificar oxidación del Gr. En lo que respecta a la adsorción de CF, la capacidad de adsorción a pH 5 y 22±1ºC de Gr fue superada ampliamente por el material oxidado GO, alcanzando valores de 34,12 y 80,45 mg g-1 respectivamente. Sin embargo, paras las tres magnetizaciones realizadas no se logró alcanzar valores semejantes al de GO: 19,06 mg g-1 (GO_MAG3) > 6,05 mg g-1 (GO_MAG2) > 4,96 mg g-1 (GO_MAG1), en todos los casos trabajando con concentraciones de sólido de 500 mg L-1. Las diferencias en las capacidades de adsorción de CF para el adsorbente GO pueden atribuirse principalmente a la interacción de dicha molécula con los grupos oxigenados generados por la oxidación. Así también, los ensayos de adsorción realizados con los materiales magnetizados pueden sugerir que la Fe3O4 podría ocupar algunos sitios activos de los materiales oxidados, disminuyendo así la posibilidad de presentar interacciones con la CF. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/conferenceObject Congreso Book http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
status_str |
publishedVersion |
format |
conferenceObject |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/219304 Adsorción de sustancias de uso farmacéutico en sistemas acuosos utilizando materiales carbonosos; XXII Congreso Argentino de Fisicoquímica y Química Inorgánica; La Plata; Argentina; 2021; 183-183 978-950-34-1999-1 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/219304 |
identifier_str_mv |
Adsorción de sustancias de uso farmacéutico en sistemas acuosos utilizando materiales carbonosos; XXII Congreso Argentino de Fisicoquímica y Química Inorgánica; La Plata; Argentina; 2021; 183-183 978-950-34-1999-1 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://congresos.unlp.edu.ar/xxiicafqi/?page_id=2218 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/vnd.openxmlformats-officedocument.wordprocessingml.document application/pdf |
dc.coverage.none.fl_str_mv |
Nacional |
dc.publisher.none.fl_str_mv |
Universidad Nacional de La Plata. Facultad de Ingeniería |
publisher.none.fl_str_mv |
Universidad Nacional de La Plata. Facultad de Ingeniería |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269128797192192 |
score |
13.13397 |