Unitarization of uniformly bounded subgroups in finite von Neumann algebras
- Autores
- Miglioli, Martín Carlos
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This note presents a new proof of the fact that every uniformly bounded group of invertible elements in a finite von Neumann algebra is similar to a unitary group. In 1974, Vasilescu and Zsido proved this result using the Ryll-Nardzewsky fixed point theorem [Vasilescu and Zsido, "Uniformly bounded groups in finite W*-algebras", Acta Sci. Math. (Szeged) 36 (1974) 189-192]. This new proof involves metric geometric arguments in the non-positively curved space of positive invertible operators of the algebra, which yield a more explicit unitarizer.
Fil: Miglioli, Martín Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina - Materia
-
Bounded subgroup
Finite algebra
Nonposite curvature
Unitarization - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/18951
Ver los metadatos del registro completo
| id |
CONICETDig_a4e7f3c6d14c8eda3a4be2b44055a01d |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/18951 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Unitarization of uniformly bounded subgroups in finite von Neumann algebrasMiglioli, Martín CarlosBounded subgroupFinite algebraNonposite curvatureUnitarizationhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1This note presents a new proof of the fact that every uniformly bounded group of invertible elements in a finite von Neumann algebra is similar to a unitary group. In 1974, Vasilescu and Zsido proved this result using the Ryll-Nardzewsky fixed point theorem [Vasilescu and Zsido, "Uniformly bounded groups in finite W*-algebras", Acta Sci. Math. (Szeged) 36 (1974) 189-192]. This new proof involves metric geometric arguments in the non-positively curved space of positive invertible operators of the algebra, which yield a more explicit unitarizer.Fil: Miglioli, Martín Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; ArgentinaOxford University Press2014-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18951Miglioli, Martín Carlos; Unitarization of uniformly bounded subgroups in finite von Neumann algebras; Oxford University Press; Bulletin Of The London Mathematical Society; 46; 6; 12-2014; 1264-12660024-6093CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1112/blms/bdu080/fullinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1302.7303info:eu-repo/semantics/altIdentifier/doi/10.1112/blms/bdu080info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:30:39Zoai:ri.conicet.gov.ar:11336/18951instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:30:40.124CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Unitarization of uniformly bounded subgroups in finite von Neumann algebras |
| title |
Unitarization of uniformly bounded subgroups in finite von Neumann algebras |
| spellingShingle |
Unitarization of uniformly bounded subgroups in finite von Neumann algebras Miglioli, Martín Carlos Bounded subgroup Finite algebra Nonposite curvature Unitarization |
| title_short |
Unitarization of uniformly bounded subgroups in finite von Neumann algebras |
| title_full |
Unitarization of uniformly bounded subgroups in finite von Neumann algebras |
| title_fullStr |
Unitarization of uniformly bounded subgroups in finite von Neumann algebras |
| title_full_unstemmed |
Unitarization of uniformly bounded subgroups in finite von Neumann algebras |
| title_sort |
Unitarization of uniformly bounded subgroups in finite von Neumann algebras |
| dc.creator.none.fl_str_mv |
Miglioli, Martín Carlos |
| author |
Miglioli, Martín Carlos |
| author_facet |
Miglioli, Martín Carlos |
| author_role |
author |
| dc.subject.none.fl_str_mv |
Bounded subgroup Finite algebra Nonposite curvature Unitarization |
| topic |
Bounded subgroup Finite algebra Nonposite curvature Unitarization |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
This note presents a new proof of the fact that every uniformly bounded group of invertible elements in a finite von Neumann algebra is similar to a unitary group. In 1974, Vasilescu and Zsido proved this result using the Ryll-Nardzewsky fixed point theorem [Vasilescu and Zsido, "Uniformly bounded groups in finite W*-algebras", Acta Sci. Math. (Szeged) 36 (1974) 189-192]. This new proof involves metric geometric arguments in the non-positively curved space of positive invertible operators of the algebra, which yield a more explicit unitarizer. Fil: Miglioli, Martín Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina |
| description |
This note presents a new proof of the fact that every uniformly bounded group of invertible elements in a finite von Neumann algebra is similar to a unitary group. In 1974, Vasilescu and Zsido proved this result using the Ryll-Nardzewsky fixed point theorem [Vasilescu and Zsido, "Uniformly bounded groups in finite W*-algebras", Acta Sci. Math. (Szeged) 36 (1974) 189-192]. This new proof involves metric geometric arguments in the non-positively curved space of positive invertible operators of the algebra, which yield a more explicit unitarizer. |
| publishDate |
2014 |
| dc.date.none.fl_str_mv |
2014-12 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/18951 Miglioli, Martín Carlos; Unitarization of uniformly bounded subgroups in finite von Neumann algebras; Oxford University Press; Bulletin Of The London Mathematical Society; 46; 6; 12-2014; 1264-1266 0024-6093 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/18951 |
| identifier_str_mv |
Miglioli, Martín Carlos; Unitarization of uniformly bounded subgroups in finite von Neumann algebras; Oxford University Press; Bulletin Of The London Mathematical Society; 46; 6; 12-2014; 1264-1266 0024-6093 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1112/blms/bdu080/full info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1302.7303 info:eu-repo/semantics/altIdentifier/doi/10.1112/blms/bdu080 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Oxford University Press |
| publisher.none.fl_str_mv |
Oxford University Press |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781902859534336 |
| score |
12.982451 |