Fundamental group of Schurian categories and the Hurewicz isomorphism

Autores
Cibils, Claude; Redondo, Maria Julia; Solotar, Andrea Leonor
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let k be a field. We attach a CW-complex to any Schurian k-category and we prove that the fundamental group of this CW-complex is isomorphic to the intrinsic fundamental group of the k-category. This extends previous results by J.C. Bustamante. We also prove that the Hurewicz morphism from the vector space of abelian characters of the fundamental group to the first Hochschild-Mitchell cohomology vector space of the category is an isomorphism.
Fil: Cibils, Claude. Universite Montpellier II; Francia
Fil: Redondo, Maria Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Matemática Bahía Blanca (i); Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina
Fil: Solotar, Andrea Leonor. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
FUNDAMENTAL GROUP
LINEAR CATEGORY
SCHURIAN CATEGORY
HUREWICZ
HOCHSCHILD
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/15459

id CONICETDig_a4cb00eaacdc51f135826730d5ff160e
oai_identifier_str oai:ri.conicet.gov.ar:11336/15459
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Fundamental group of Schurian categories and the Hurewicz isomorphismCibils, ClaudeRedondo, Maria JuliaSolotar, Andrea LeonorFUNDAMENTAL GROUPLINEAR CATEGORYSCHURIAN CATEGORYHUREWICZHOCHSCHILDhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let k be a field. We attach a CW-complex to any Schurian k-category and we prove that the fundamental group of this CW-complex is isomorphic to the intrinsic fundamental group of the k-category. This extends previous results by J.C. Bustamante. We also prove that the Hurewicz morphism from the vector space of abelian characters of the fundamental group to the first Hochschild-Mitchell cohomology vector space of the category is an isomorphism.Fil: Cibils, Claude. Universite Montpellier II; FranciaFil: Redondo, Maria Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Matemática Bahía Blanca (i); Argentina. Universidad Nacional del Sur. Departamento de Matemática; ArgentinaFil: Solotar, Andrea Leonor. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaUniv Bielefeld2011-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/15459Cibils, Claude; Redondo, Maria Julia; Solotar, Andrea Leonor; Fundamental group of Schurian categories and the Hurewicz isomorphism; Univ Bielefeld; Documenta Mathematica; 16; 6-2011; 581-5951431-06351431-0643enginfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1010.6296info:eu-repo/semantics/altIdentifier/url/https://www.math.uni-bielefeld.de/documenta/vol-16/19.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:28:35Zoai:ri.conicet.gov.ar:11336/15459instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:28:35.374CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Fundamental group of Schurian categories and the Hurewicz isomorphism
title Fundamental group of Schurian categories and the Hurewicz isomorphism
spellingShingle Fundamental group of Schurian categories and the Hurewicz isomorphism
Cibils, Claude
FUNDAMENTAL GROUP
LINEAR CATEGORY
SCHURIAN CATEGORY
HUREWICZ
HOCHSCHILD
title_short Fundamental group of Schurian categories and the Hurewicz isomorphism
title_full Fundamental group of Schurian categories and the Hurewicz isomorphism
title_fullStr Fundamental group of Schurian categories and the Hurewicz isomorphism
title_full_unstemmed Fundamental group of Schurian categories and the Hurewicz isomorphism
title_sort Fundamental group of Schurian categories and the Hurewicz isomorphism
dc.creator.none.fl_str_mv Cibils, Claude
Redondo, Maria Julia
Solotar, Andrea Leonor
author Cibils, Claude
author_facet Cibils, Claude
Redondo, Maria Julia
Solotar, Andrea Leonor
author_role author
author2 Redondo, Maria Julia
Solotar, Andrea Leonor
author2_role author
author
dc.subject.none.fl_str_mv FUNDAMENTAL GROUP
LINEAR CATEGORY
SCHURIAN CATEGORY
HUREWICZ
HOCHSCHILD
topic FUNDAMENTAL GROUP
LINEAR CATEGORY
SCHURIAN CATEGORY
HUREWICZ
HOCHSCHILD
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Let k be a field. We attach a CW-complex to any Schurian k-category and we prove that the fundamental group of this CW-complex is isomorphic to the intrinsic fundamental group of the k-category. This extends previous results by J.C. Bustamante. We also prove that the Hurewicz morphism from the vector space of abelian characters of the fundamental group to the first Hochschild-Mitchell cohomology vector space of the category is an isomorphism.
Fil: Cibils, Claude. Universite Montpellier II; Francia
Fil: Redondo, Maria Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Matemática Bahía Blanca (i); Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina
Fil: Solotar, Andrea Leonor. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description Let k be a field. We attach a CW-complex to any Schurian k-category and we prove that the fundamental group of this CW-complex is isomorphic to the intrinsic fundamental group of the k-category. This extends previous results by J.C. Bustamante. We also prove that the Hurewicz morphism from the vector space of abelian characters of the fundamental group to the first Hochschild-Mitchell cohomology vector space of the category is an isomorphism.
publishDate 2011
dc.date.none.fl_str_mv 2011-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/15459
Cibils, Claude; Redondo, Maria Julia; Solotar, Andrea Leonor; Fundamental group of Schurian categories and the Hurewicz isomorphism; Univ Bielefeld; Documenta Mathematica; 16; 6-2011; 581-595
1431-0635
1431-0643
url http://hdl.handle.net/11336/15459
identifier_str_mv Cibils, Claude; Redondo, Maria Julia; Solotar, Andrea Leonor; Fundamental group of Schurian categories and the Hurewicz isomorphism; Univ Bielefeld; Documenta Mathematica; 16; 6-2011; 581-595
1431-0635
1431-0643
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1010.6296
info:eu-repo/semantics/altIdentifier/url/https://www.math.uni-bielefeld.de/documenta/vol-16/19.html
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Univ Bielefeld
publisher.none.fl_str_mv Univ Bielefeld
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614289715888128
score 13.069144