The intrinsic fundamental group of a linear category

Autores
Cibils, Claude; Redondo, Maria Julia; Solotar, Andrea Leonor
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We provide an intrinsic definition of the fundamental group of a linear category over a ring as the automorphism group of the fibre functor on Galois coverings. If the universal covering exists, we prove that this group is isomorphic to the Galois group of the universal covering. The grading deduced from a Galois covering enables us to describe the canonical monomorphism from its automorphism group to the first Hochschild-Mitchell cohomology vector space.
Fil: Cibils, Claude. Universite Montpellier II; Francia
Fil: Redondo, Maria Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Matemática Bahía Blanca (i); Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina
Fil: Solotar, Andrea Leonor. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
FUNDAMENTAL GROUP
QUIVER
PRESENTATION
LINEAR CATEGORY
HOCHSCHILD-MITCHELL
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/15443

id CONICETDig_34d27014a0e17df02b5d9c12923897dd
oai_identifier_str oai:ri.conicet.gov.ar:11336/15443
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The intrinsic fundamental group of a linear categoryCibils, ClaudeRedondo, Maria JuliaSolotar, Andrea LeonorFUNDAMENTAL GROUPQUIVERPRESENTATIONLINEAR CATEGORYHOCHSCHILD-MITCHELLhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We provide an intrinsic definition of the fundamental group of a linear category over a ring as the automorphism group of the fibre functor on Galois coverings. If the universal covering exists, we prove that this group is isomorphic to the Galois group of the universal covering. The grading deduced from a Galois covering enables us to describe the canonical monomorphism from its automorphism group to the first Hochschild-Mitchell cohomology vector space.Fil: Cibils, Claude. Universite Montpellier II; FranciaFil: Redondo, Maria Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Matemática Bahía Blanca (i); Argentina. Universidad Nacional del Sur. Departamento de Matemática; ArgentinaFil: Solotar, Andrea Leonor. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaSpringer2012-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/15443Cibils, Claude; Redondo, Maria Julia; Solotar, Andrea Leonor; The intrinsic fundamental group of a linear category; Springer; Algebras and Representation Theory; 15; 4; 8-2012; 735-7531386-923X1572-9079enginfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0706.2491info:eu-repo/semantics/altIdentifier/doi/10.1007/s10468-010-9263-1info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10468-010-9263-1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:40:35Zoai:ri.conicet.gov.ar:11336/15443instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:40:35.336CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The intrinsic fundamental group of a linear category
title The intrinsic fundamental group of a linear category
spellingShingle The intrinsic fundamental group of a linear category
Cibils, Claude
FUNDAMENTAL GROUP
QUIVER
PRESENTATION
LINEAR CATEGORY
HOCHSCHILD-MITCHELL
title_short The intrinsic fundamental group of a linear category
title_full The intrinsic fundamental group of a linear category
title_fullStr The intrinsic fundamental group of a linear category
title_full_unstemmed The intrinsic fundamental group of a linear category
title_sort The intrinsic fundamental group of a linear category
dc.creator.none.fl_str_mv Cibils, Claude
Redondo, Maria Julia
Solotar, Andrea Leonor
author Cibils, Claude
author_facet Cibils, Claude
Redondo, Maria Julia
Solotar, Andrea Leonor
author_role author
author2 Redondo, Maria Julia
Solotar, Andrea Leonor
author2_role author
author
dc.subject.none.fl_str_mv FUNDAMENTAL GROUP
QUIVER
PRESENTATION
LINEAR CATEGORY
HOCHSCHILD-MITCHELL
topic FUNDAMENTAL GROUP
QUIVER
PRESENTATION
LINEAR CATEGORY
HOCHSCHILD-MITCHELL
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We provide an intrinsic definition of the fundamental group of a linear category over a ring as the automorphism group of the fibre functor on Galois coverings. If the universal covering exists, we prove that this group is isomorphic to the Galois group of the universal covering. The grading deduced from a Galois covering enables us to describe the canonical monomorphism from its automorphism group to the first Hochschild-Mitchell cohomology vector space.
Fil: Cibils, Claude. Universite Montpellier II; Francia
Fil: Redondo, Maria Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Matemática Bahía Blanca (i); Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina
Fil: Solotar, Andrea Leonor. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description We provide an intrinsic definition of the fundamental group of a linear category over a ring as the automorphism group of the fibre functor on Galois coverings. If the universal covering exists, we prove that this group is isomorphic to the Galois group of the universal covering. The grading deduced from a Galois covering enables us to describe the canonical monomorphism from its automorphism group to the first Hochschild-Mitchell cohomology vector space.
publishDate 2012
dc.date.none.fl_str_mv 2012-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/15443
Cibils, Claude; Redondo, Maria Julia; Solotar, Andrea Leonor; The intrinsic fundamental group of a linear category; Springer; Algebras and Representation Theory; 15; 4; 8-2012; 735-753
1386-923X
1572-9079
url http://hdl.handle.net/11336/15443
identifier_str_mv Cibils, Claude; Redondo, Maria Julia; Solotar, Andrea Leonor; The intrinsic fundamental group of a linear category; Springer; Algebras and Representation Theory; 15; 4; 8-2012; 735-753
1386-923X
1572-9079
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0706.2491
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10468-010-9263-1
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10468-010-9263-1
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613284154572800
score 13.069144