The intrinsic fundamental group of a linear category
- Autores
- Cibils, Claude; Redondo, Maria Julia; Solotar, Andrea Leonor
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We provide an intrinsic definition of the fundamental group of a linear category over a ring as the automorphism group of the fibre functor on Galois coverings. If the universal covering exists, we prove that this group is isomorphic to the Galois group of the universal covering. The grading deduced from a Galois covering enables us to describe the canonical monomorphism from its automorphism group to the first Hochschild-Mitchell cohomology vector space.
Fil: Cibils, Claude. Universite Montpellier II; Francia
Fil: Redondo, Maria Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Matemática Bahía Blanca (i); Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina
Fil: Solotar, Andrea Leonor. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
FUNDAMENTAL GROUP
QUIVER
PRESENTATION
LINEAR CATEGORY
HOCHSCHILD-MITCHELL - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/15443
Ver los metadatos del registro completo
id |
CONICETDig_34d27014a0e17df02b5d9c12923897dd |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/15443 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The intrinsic fundamental group of a linear categoryCibils, ClaudeRedondo, Maria JuliaSolotar, Andrea LeonorFUNDAMENTAL GROUPQUIVERPRESENTATIONLINEAR CATEGORYHOCHSCHILD-MITCHELLhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We provide an intrinsic definition of the fundamental group of a linear category over a ring as the automorphism group of the fibre functor on Galois coverings. If the universal covering exists, we prove that this group is isomorphic to the Galois group of the universal covering. The grading deduced from a Galois covering enables us to describe the canonical monomorphism from its automorphism group to the first Hochschild-Mitchell cohomology vector space.Fil: Cibils, Claude. Universite Montpellier II; FranciaFil: Redondo, Maria Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Matemática Bahía Blanca (i); Argentina. Universidad Nacional del Sur. Departamento de Matemática; ArgentinaFil: Solotar, Andrea Leonor. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaSpringer2012-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/15443Cibils, Claude; Redondo, Maria Julia; Solotar, Andrea Leonor; The intrinsic fundamental group of a linear category; Springer; Algebras and Representation Theory; 15; 4; 8-2012; 735-7531386-923X1572-9079enginfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0706.2491info:eu-repo/semantics/altIdentifier/doi/10.1007/s10468-010-9263-1info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10468-010-9263-1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:40:35Zoai:ri.conicet.gov.ar:11336/15443instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:40:35.336CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The intrinsic fundamental group of a linear category |
title |
The intrinsic fundamental group of a linear category |
spellingShingle |
The intrinsic fundamental group of a linear category Cibils, Claude FUNDAMENTAL GROUP QUIVER PRESENTATION LINEAR CATEGORY HOCHSCHILD-MITCHELL |
title_short |
The intrinsic fundamental group of a linear category |
title_full |
The intrinsic fundamental group of a linear category |
title_fullStr |
The intrinsic fundamental group of a linear category |
title_full_unstemmed |
The intrinsic fundamental group of a linear category |
title_sort |
The intrinsic fundamental group of a linear category |
dc.creator.none.fl_str_mv |
Cibils, Claude Redondo, Maria Julia Solotar, Andrea Leonor |
author |
Cibils, Claude |
author_facet |
Cibils, Claude Redondo, Maria Julia Solotar, Andrea Leonor |
author_role |
author |
author2 |
Redondo, Maria Julia Solotar, Andrea Leonor |
author2_role |
author author |
dc.subject.none.fl_str_mv |
FUNDAMENTAL GROUP QUIVER PRESENTATION LINEAR CATEGORY HOCHSCHILD-MITCHELL |
topic |
FUNDAMENTAL GROUP QUIVER PRESENTATION LINEAR CATEGORY HOCHSCHILD-MITCHELL |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We provide an intrinsic definition of the fundamental group of a linear category over a ring as the automorphism group of the fibre functor on Galois coverings. If the universal covering exists, we prove that this group is isomorphic to the Galois group of the universal covering. The grading deduced from a Galois covering enables us to describe the canonical monomorphism from its automorphism group to the first Hochschild-Mitchell cohomology vector space. Fil: Cibils, Claude. Universite Montpellier II; Francia Fil: Redondo, Maria Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Matemática Bahía Blanca (i); Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina Fil: Solotar, Andrea Leonor. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
We provide an intrinsic definition of the fundamental group of a linear category over a ring as the automorphism group of the fibre functor on Galois coverings. If the universal covering exists, we prove that this group is isomorphic to the Galois group of the universal covering. The grading deduced from a Galois covering enables us to describe the canonical monomorphism from its automorphism group to the first Hochschild-Mitchell cohomology vector space. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/15443 Cibils, Claude; Redondo, Maria Julia; Solotar, Andrea Leonor; The intrinsic fundamental group of a linear category; Springer; Algebras and Representation Theory; 15; 4; 8-2012; 735-753 1386-923X 1572-9079 |
url |
http://hdl.handle.net/11336/15443 |
identifier_str_mv |
Cibils, Claude; Redondo, Maria Julia; Solotar, Andrea Leonor; The intrinsic fundamental group of a linear category; Springer; Algebras and Representation Theory; 15; 4; 8-2012; 735-753 1386-923X 1572-9079 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0706.2491 info:eu-repo/semantics/altIdentifier/doi/10.1007/s10468-010-9263-1 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10468-010-9263-1 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613284154572800 |
score |
13.069144 |