Full and Convex Linear Subcategories are Incompressible

Autores
Cibils, Claude; Redondo, Maria Julia; Solotar, Andrea Leonor
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Consider the intrinsic fundamental group à la Grothendieck of a linear category, introduced in our earlier papers using connected gradings. In this article we prove that any full convex subcategory is incompressible, in the sense that the group map between the corresponding fundamental groups is injective. We start by proving the functoriality of the intrinsic fundamental group with respect to full subcategories, based on the study of the restriction of connected gradings.
Fil: Cibils, Claude. Universite Montpellier Ii; Francia
Fil: Redondo, Maria Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Matemática Bahía Blanca (i); Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina
Fil: Solotar, Andrea Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Materia
Category
Fundamental
Group
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/11921

id CONICETDig_7934516fed55665d7136cc0ff99dbf22
oai_identifier_str oai:ri.conicet.gov.ar:11336/11921
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Full and Convex Linear Subcategories are IncompressibleCibils, ClaudeRedondo, Maria JuliaSolotar, Andrea LeonorCategoryFundamentalGrouphttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Consider the intrinsic fundamental group à la Grothendieck of a linear category, introduced in our earlier papers using connected gradings. In this article we prove that any full convex subcategory is incompressible, in the sense that the group map between the corresponding fundamental groups is injective. We start by proving the functoriality of the intrinsic fundamental group with respect to full subcategories, based on the study of the restriction of connected gradings.Fil: Cibils, Claude. Universite Montpellier Ii; FranciaFil: Redondo, Maria Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Matemática Bahía Blanca (i); Argentina. Universidad Nacional del Sur. Departamento de Matemática; ArgentinaFil: Solotar, Andrea Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaAmer Mathematical Soc2013-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/11921Cibils, Claude; Redondo, Maria Julia; Solotar, Andrea Leonor; Full and Convex Linear Subcategories are Incompressible; Amer Mathematical Soc; Proceedings Of The American Mathematical Society; 141; 6; 6-2013; 1939-19460002-99391088-6826enginfo:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/proc/2013-141-06/S0002-9939-2013-11470-X/info:eu-repo/semantics/altIdentifier/url/https://doi.org/10.1090/S0002-9939-2013-11470-Xinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1004.5553info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:43:15Zoai:ri.conicet.gov.ar:11336/11921instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:43:15.825CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Full and Convex Linear Subcategories are Incompressible
title Full and Convex Linear Subcategories are Incompressible
spellingShingle Full and Convex Linear Subcategories are Incompressible
Cibils, Claude
Category
Fundamental
Group
title_short Full and Convex Linear Subcategories are Incompressible
title_full Full and Convex Linear Subcategories are Incompressible
title_fullStr Full and Convex Linear Subcategories are Incompressible
title_full_unstemmed Full and Convex Linear Subcategories are Incompressible
title_sort Full and Convex Linear Subcategories are Incompressible
dc.creator.none.fl_str_mv Cibils, Claude
Redondo, Maria Julia
Solotar, Andrea Leonor
author Cibils, Claude
author_facet Cibils, Claude
Redondo, Maria Julia
Solotar, Andrea Leonor
author_role author
author2 Redondo, Maria Julia
Solotar, Andrea Leonor
author2_role author
author
dc.subject.none.fl_str_mv Category
Fundamental
Group
topic Category
Fundamental
Group
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Consider the intrinsic fundamental group à la Grothendieck of a linear category, introduced in our earlier papers using connected gradings. In this article we prove that any full convex subcategory is incompressible, in the sense that the group map between the corresponding fundamental groups is injective. We start by proving the functoriality of the intrinsic fundamental group with respect to full subcategories, based on the study of the restriction of connected gradings.
Fil: Cibils, Claude. Universite Montpellier Ii; Francia
Fil: Redondo, Maria Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Matemática Bahía Blanca (i); Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina
Fil: Solotar, Andrea Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
description Consider the intrinsic fundamental group à la Grothendieck of a linear category, introduced in our earlier papers using connected gradings. In this article we prove that any full convex subcategory is incompressible, in the sense that the group map between the corresponding fundamental groups is injective. We start by proving the functoriality of the intrinsic fundamental group with respect to full subcategories, based on the study of the restriction of connected gradings.
publishDate 2013
dc.date.none.fl_str_mv 2013-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/11921
Cibils, Claude; Redondo, Maria Julia; Solotar, Andrea Leonor; Full and Convex Linear Subcategories are Incompressible; Amer Mathematical Soc; Proceedings Of The American Mathematical Society; 141; 6; 6-2013; 1939-1946
0002-9939
1088-6826
url http://hdl.handle.net/11336/11921
identifier_str_mv Cibils, Claude; Redondo, Maria Julia; Solotar, Andrea Leonor; Full and Convex Linear Subcategories are Incompressible; Amer Mathematical Soc; Proceedings Of The American Mathematical Society; 141; 6; 6-2013; 1939-1946
0002-9939
1088-6826
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/proc/2013-141-06/S0002-9939-2013-11470-X/
info:eu-repo/semantics/altIdentifier/url/https://doi.org/10.1090/S0002-9939-2013-11470-X
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1004.5553
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Amer Mathematical Soc
publisher.none.fl_str_mv Amer Mathematical Soc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614467359342592
score 13.070432