Full and Convex Linear Subcategories are Incompressible
- Autores
- Cibils, Claude; Redondo, Maria Julia; Solotar, Andrea Leonor
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Consider the intrinsic fundamental group à la Grothendieck of a linear category, introduced in our earlier papers using connected gradings. In this article we prove that any full convex subcategory is incompressible, in the sense that the group map between the corresponding fundamental groups is injective. We start by proving the functoriality of the intrinsic fundamental group with respect to full subcategories, based on the study of the restriction of connected gradings.
Fil: Cibils, Claude. Universite Montpellier Ii; Francia
Fil: Redondo, Maria Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Matemática Bahía Blanca (i); Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina
Fil: Solotar, Andrea Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina - Materia
-
Category
Fundamental
Group - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/11921
Ver los metadatos del registro completo
id |
CONICETDig_7934516fed55665d7136cc0ff99dbf22 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/11921 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Full and Convex Linear Subcategories are IncompressibleCibils, ClaudeRedondo, Maria JuliaSolotar, Andrea LeonorCategoryFundamentalGrouphttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Consider the intrinsic fundamental group à la Grothendieck of a linear category, introduced in our earlier papers using connected gradings. In this article we prove that any full convex subcategory is incompressible, in the sense that the group map between the corresponding fundamental groups is injective. We start by proving the functoriality of the intrinsic fundamental group with respect to full subcategories, based on the study of the restriction of connected gradings.Fil: Cibils, Claude. Universite Montpellier Ii; FranciaFil: Redondo, Maria Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Matemática Bahía Blanca (i); Argentina. Universidad Nacional del Sur. Departamento de Matemática; ArgentinaFil: Solotar, Andrea Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaAmer Mathematical Soc2013-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/11921Cibils, Claude; Redondo, Maria Julia; Solotar, Andrea Leonor; Full and Convex Linear Subcategories are Incompressible; Amer Mathematical Soc; Proceedings Of The American Mathematical Society; 141; 6; 6-2013; 1939-19460002-99391088-6826enginfo:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/proc/2013-141-06/S0002-9939-2013-11470-X/info:eu-repo/semantics/altIdentifier/url/https://doi.org/10.1090/S0002-9939-2013-11470-Xinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1004.5553info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:43:15Zoai:ri.conicet.gov.ar:11336/11921instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:43:15.825CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Full and Convex Linear Subcategories are Incompressible |
title |
Full and Convex Linear Subcategories are Incompressible |
spellingShingle |
Full and Convex Linear Subcategories are Incompressible Cibils, Claude Category Fundamental Group |
title_short |
Full and Convex Linear Subcategories are Incompressible |
title_full |
Full and Convex Linear Subcategories are Incompressible |
title_fullStr |
Full and Convex Linear Subcategories are Incompressible |
title_full_unstemmed |
Full and Convex Linear Subcategories are Incompressible |
title_sort |
Full and Convex Linear Subcategories are Incompressible |
dc.creator.none.fl_str_mv |
Cibils, Claude Redondo, Maria Julia Solotar, Andrea Leonor |
author |
Cibils, Claude |
author_facet |
Cibils, Claude Redondo, Maria Julia Solotar, Andrea Leonor |
author_role |
author |
author2 |
Redondo, Maria Julia Solotar, Andrea Leonor |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Category Fundamental Group |
topic |
Category Fundamental Group |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Consider the intrinsic fundamental group à la Grothendieck of a linear category, introduced in our earlier papers using connected gradings. In this article we prove that any full convex subcategory is incompressible, in the sense that the group map between the corresponding fundamental groups is injective. We start by proving the functoriality of the intrinsic fundamental group with respect to full subcategories, based on the study of the restriction of connected gradings. Fil: Cibils, Claude. Universite Montpellier Ii; Francia Fil: Redondo, Maria Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Matemática Bahía Blanca (i); Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina Fil: Solotar, Andrea Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina |
description |
Consider the intrinsic fundamental group à la Grothendieck of a linear category, introduced in our earlier papers using connected gradings. In this article we prove that any full convex subcategory is incompressible, in the sense that the group map between the corresponding fundamental groups is injective. We start by proving the functoriality of the intrinsic fundamental group with respect to full subcategories, based on the study of the restriction of connected gradings. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/11921 Cibils, Claude; Redondo, Maria Julia; Solotar, Andrea Leonor; Full and Convex Linear Subcategories are Incompressible; Amer Mathematical Soc; Proceedings Of The American Mathematical Society; 141; 6; 6-2013; 1939-1946 0002-9939 1088-6826 |
url |
http://hdl.handle.net/11336/11921 |
identifier_str_mv |
Cibils, Claude; Redondo, Maria Julia; Solotar, Andrea Leonor; Full and Convex Linear Subcategories are Incompressible; Amer Mathematical Soc; Proceedings Of The American Mathematical Society; 141; 6; 6-2013; 1939-1946 0002-9939 1088-6826 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/proc/2013-141-06/S0002-9939-2013-11470-X/ info:eu-repo/semantics/altIdentifier/url/https://doi.org/10.1090/S0002-9939-2013-11470-X info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1004.5553 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Amer Mathematical Soc |
publisher.none.fl_str_mv |
Amer Mathematical Soc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614467359342592 |
score |
13.070432 |