Enhanced replacement method integration with genetic algorithms populations in QSAR and QSPR theories
- Autores
- Mercader, Andrew Gustavo; Duchowicz, Pablo Román
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The selection of an optimal set of molecular descriptors from a much larger collection of such regression variables is a vital step in the elaboration of most QSAR and QSPR models. The aim of this work is to continue advancing this important selection process by combining the enhanced replacement method (ERM) and the well-known genetic algorithms (GA). These approaches had previously proven to yield near-optimal results with a much smaller number of linear regressions than a full search. The newly proposed algorithms were tested on four different experimental datasets, formed by collections of 116, 200, 78, and 100 experimental records from different compounds and 1268, 1338, 1187, and 1306 molecular descriptors, respectively. The comparisons showed that the new alternative ERMp (combination of ERM with a GA population) further improves ERM, it has previously been shown that the latter is superior to GA for the selection of an optimal set of molecular descriptors from a much greater pool.
Fil: Mercader, Andrew Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Fil: Duchowicz, Pablo Román. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina - Materia
-
Teoría Qspr-Qsar
Método del Reemplazo
Análisis de Regresión Lineal Multivariable
Técnica de Selección de Variables - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/48699
Ver los metadatos del registro completo
id |
CONICETDig_a3ce72a16b71386131d38cfaa2072b73 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/48699 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Enhanced replacement method integration with genetic algorithms populations in QSAR and QSPR theoriesMercader, Andrew GustavoDuchowicz, Pablo RománTeoría Qspr-QsarMétodo del ReemplazoAnálisis de Regresión Lineal MultivariableTécnica de Selección de Variableshttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1The selection of an optimal set of molecular descriptors from a much larger collection of such regression variables is a vital step in the elaboration of most QSAR and QSPR models. The aim of this work is to continue advancing this important selection process by combining the enhanced replacement method (ERM) and the well-known genetic algorithms (GA). These approaches had previously proven to yield near-optimal results with a much smaller number of linear regressions than a full search. The newly proposed algorithms were tested on four different experimental datasets, formed by collections of 116, 200, 78, and 100 experimental records from different compounds and 1268, 1338, 1187, and 1306 molecular descriptors, respectively. The comparisons showed that the new alternative ERMp (combination of ERM with a GA population) further improves ERM, it has previously been shown that the latter is superior to GA for the selection of an optimal set of molecular descriptors from a much greater pool.Fil: Mercader, Andrew Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Duchowicz, Pablo Román. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaElsevier Science2015-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/48699Mercader, Andrew Gustavo; Duchowicz, Pablo Román; Enhanced replacement method integration with genetic algorithms populations in QSAR and QSPR theories; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 149; 3-2015; 117-1220169-7439CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.chemolab.2015.10.007info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0169743915002580info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:57:17Zoai:ri.conicet.gov.ar:11336/48699instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:57:17.501CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Enhanced replacement method integration with genetic algorithms populations in QSAR and QSPR theories |
title |
Enhanced replacement method integration with genetic algorithms populations in QSAR and QSPR theories |
spellingShingle |
Enhanced replacement method integration with genetic algorithms populations in QSAR and QSPR theories Mercader, Andrew Gustavo Teoría Qspr-Qsar Método del Reemplazo Análisis de Regresión Lineal Multivariable Técnica de Selección de Variables |
title_short |
Enhanced replacement method integration with genetic algorithms populations in QSAR and QSPR theories |
title_full |
Enhanced replacement method integration with genetic algorithms populations in QSAR and QSPR theories |
title_fullStr |
Enhanced replacement method integration with genetic algorithms populations in QSAR and QSPR theories |
title_full_unstemmed |
Enhanced replacement method integration with genetic algorithms populations in QSAR and QSPR theories |
title_sort |
Enhanced replacement method integration with genetic algorithms populations in QSAR and QSPR theories |
dc.creator.none.fl_str_mv |
Mercader, Andrew Gustavo Duchowicz, Pablo Román |
author |
Mercader, Andrew Gustavo |
author_facet |
Mercader, Andrew Gustavo Duchowicz, Pablo Román |
author_role |
author |
author2 |
Duchowicz, Pablo Román |
author2_role |
author |
dc.subject.none.fl_str_mv |
Teoría Qspr-Qsar Método del Reemplazo Análisis de Regresión Lineal Multivariable Técnica de Selección de Variables |
topic |
Teoría Qspr-Qsar Método del Reemplazo Análisis de Regresión Lineal Multivariable Técnica de Selección de Variables |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The selection of an optimal set of molecular descriptors from a much larger collection of such regression variables is a vital step in the elaboration of most QSAR and QSPR models. The aim of this work is to continue advancing this important selection process by combining the enhanced replacement method (ERM) and the well-known genetic algorithms (GA). These approaches had previously proven to yield near-optimal results with a much smaller number of linear regressions than a full search. The newly proposed algorithms were tested on four different experimental datasets, formed by collections of 116, 200, 78, and 100 experimental records from different compounds and 1268, 1338, 1187, and 1306 molecular descriptors, respectively. The comparisons showed that the new alternative ERMp (combination of ERM with a GA population) further improves ERM, it has previously been shown that the latter is superior to GA for the selection of an optimal set of molecular descriptors from a much greater pool. Fil: Mercader, Andrew Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina Fil: Duchowicz, Pablo Román. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina |
description |
The selection of an optimal set of molecular descriptors from a much larger collection of such regression variables is a vital step in the elaboration of most QSAR and QSPR models. The aim of this work is to continue advancing this important selection process by combining the enhanced replacement method (ERM) and the well-known genetic algorithms (GA). These approaches had previously proven to yield near-optimal results with a much smaller number of linear regressions than a full search. The newly proposed algorithms were tested on four different experimental datasets, formed by collections of 116, 200, 78, and 100 experimental records from different compounds and 1268, 1338, 1187, and 1306 molecular descriptors, respectively. The comparisons showed that the new alternative ERMp (combination of ERM with a GA population) further improves ERM, it has previously been shown that the latter is superior to GA for the selection of an optimal set of molecular descriptors from a much greater pool. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/48699 Mercader, Andrew Gustavo; Duchowicz, Pablo Román; Enhanced replacement method integration with genetic algorithms populations in QSAR and QSPR theories; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 149; 3-2015; 117-122 0169-7439 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/48699 |
identifier_str_mv |
Mercader, Andrew Gustavo; Duchowicz, Pablo Román; Enhanced replacement method integration with genetic algorithms populations in QSAR and QSPR theories; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 149; 3-2015; 117-122 0169-7439 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.chemolab.2015.10.007 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0169743915002580 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269453973192704 |
score |
13.13397 |